These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 38177681)

  • 1. Design of complicated all-α protein structures.
    Sakuma K; Kobayashi N; Sugiki T; Nagashima T; Fujiwara T; Suzuki K; Kobayashi N; Murata T; Kosugi T; Tatsumi-Koga R; Koga N
    Nat Struct Mol Biol; 2024 Feb; 31(2):275-282. PubMed ID: 38177681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enumeration and comprehensive in-silico modeling of three-helix bundle structures composed of typical αα-hairpins.
    Sakuma K; Minami S
    BMC Bioinformatics; 2021 Sep; 22(1):465. PubMed ID: 34579643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of backbone strain in de novo design of complex α/β protein structures.
    Koga N; Koga R; Liu G; Castellanos J; Montelione GT; Baker D
    Nat Commun; 2021 Jun; 12(1):3921. PubMed ID: 34168113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo design of self-assembling helical protein filaments.
    Shen H; Fallas JA; Lynch E; Sheffler W; Parry B; Jannetty N; Decarreau J; Wagenbach M; Vicente JJ; Chen J; Wang L; Dowling Q; Oberdorfer G; Stewart L; Wordeman L; De Yoreo J; Jacobs-Wagner C; Kollman J; Baker D
    Science; 2018 Nov; 362(6415):705-709. PubMed ID: 30409885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Principles for designing ideal protein structures.
    Koga N; Tatsumi-Koga R; Liu G; Xiao R; Acton TB; Montelione GT; Baker D
    Nature; 2012 Nov; 491(7423):222-7. PubMed ID: 23135467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rationally seeded computational protein design of ɑ-helical barrels.
    Albanese KI; Petrenas R; Pirro F; Naudin EA; Borucu U; Dawson WM; Scott DA; Leggett GJ; Weiner OD; Oliver TAA; Woolfson DN
    Nat Chem Biol; 2024 Aug; 20(8):991-999. PubMed ID: 38902458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physics-based approach to extend a de novo TIM barrel with rationally designed helix-loop-helix motifs.
    Kordes S; Beck J; Shanmugaratnam S; Flecks M; Höcker B
    Protein Eng Des Sel; 2023 Jan; 36():. PubMed ID: 37707513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust folding of a de novo designed ideal protein even with most of the core mutated to valine.
    Koga R; Yamamoto M; Kosugi T; Kobayashi N; Sugiki T; Fujiwara T; Koga N
    Proc Natl Acad Sci U S A; 2020 Dec; 117(49):31149-31156. PubMed ID: 33229587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of specific nanoenvironments containing α-helices in all-α and (α+β)+(α/β) proteins.
    Mazoni I; Borro LC; Jardine JG; Yano IH; Salim JA; Neshich G
    PLoS One; 2018; 13(7):e0200018. PubMed ID: 29990352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unique behaviour of the α-helix in bending deformation.
    Kim DI; Han SJ; Lim YB
    Chem Commun (Camb); 2022 Mar; 58(27):4368-4371. PubMed ID: 35297460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HelixGAN a deep-learning methodology for conditional de novo design of α-helix structures.
    Xie X; Valiente PA; Kim PM
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36651657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo design of discrete, stable 3
    Kumar P; Paterson NG; Clayden J; Woolfson DN
    Nature; 2022 Jul; 607(7918):387-392. PubMed ID: 35732733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Length-Dependent Collective Vibrational Dynamics in Alpha-Helices.
    Zhang Z; Chen M; Zhan L; Zheng F; Si W; Sha J; Chen Y
    Chemphyschem; 2022 Jun; 23(12):e202200082. PubMed ID: 35384211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational de novo design of a four-helix bundle protein--DND_4HB.
    Murphy GS; Sathyamoorthy B; Der BS; Machius MC; Pulavarti SV; Szyperski T; Kuhlman B
    Protein Sci; 2015 Apr; 24(4):434-45. PubMed ID: 25287625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Navigating the Structural Landscape of De Novo α-Helical Bundles.
    Rhys GG; Wood CW; Beesley JL; Zaccai NR; Burton AJ; Brady RL; Thomson AR; Woolfson DN
    J Am Chem Soc; 2019 Jun; 141(22):8787-8797. PubMed ID: 31066556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding a protein fold: The physics, chemistry, and biology of α-helical coiled coils.
    Woolfson DN
    J Biol Chem; 2023 Apr; 299(4):104579. PubMed ID: 36871758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. De novo proteins from designed combinatorial libraries.
    Hecht MH; Das A; Go A; Bradley LH; Wei Y
    Protein Sci; 2004 Jul; 13(7):1711-23. PubMed ID: 15215517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hydrogen bond surrogate approach for stabilization of short peptide sequences in alpha-helical conformation.
    Patgiri A; Jochim AL; Arora PS
    Acc Chem Res; 2008 Oct; 41(10):1289-300. PubMed ID: 18630933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modular repeat protein sculpting using rigid helical junctions.
    Brunette TJ; Bick MJ; Hansen JM; Chow CM; Kollman JM; Baker D
    Proc Natl Acad Sci U S A; 2020 Apr; 117(16):8870-8875. PubMed ID: 32245816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De novo design: backbone conformational constraints in nucleating helices and beta-hairpins.
    Balaram P
    J Pept Res; 1999 Sep; 54(3):195-9. PubMed ID: 10517156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.