These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 38177723)

  • 1. Interpretable neural architecture search and transfer learning for understanding CRISPR-Cas9 off-target enzymatic reactions.
    Zhang Z; Lamson AR; Shelley M; Troyanskaya O
    Nat Comput Sci; 2023 Dec; 3(12):1056-1066. PubMed ID: 38177723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interpretable neural architecture search and transfer learning for understanding CRISPR/Cas9 off-target enzymatic reactions.
    Zhang Z; Lamson AR; Shelley M; Troyanskaya O
    ArXiv; 2023 Sep; ():. PubMed ID: 37808087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. R-CRISPR: A Deep Learning Network to Predict Off-Target Activities with Mismatch, Insertion and Deletion in CRISPR-Cas9 System.
    Niu R; Peng J; Zhang Z; Shang X
    Genes (Basel); 2021 Nov; 12(12):. PubMed ID: 34946828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CROTON: an automated and variant-aware deep learning framework for predicting CRISPR/Cas9 editing outcomes.
    Li VR; Zhang Z; Troyanskaya OG
    Bioinformatics; 2021 Jul; 37(Suppl_1):i342-i348. PubMed ID: 34252931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of activity and specificity of CRISPR-Cpf1 using convolutional deep learning neural networks.
    Luo J; Chen W; Xue L; Tang B
    BMC Bioinformatics; 2019 Jun; 20(1):332. PubMed ID: 31195957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of sgRNA on-target activity in bacteria by deep learning.
    Wang L; Zhang J
    BMC Bioinformatics; 2019 Oct; 20(1):517. PubMed ID: 31651233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DeepCRISTL: deep transfer learning to predict CRISPR/Cas9 functional and endogenous on-target editing efficiency.
    Elkayam S; Orenstein Y
    Bioinformatics; 2022 Jun; 38(Suppl 1):i161-i168. PubMed ID: 35758815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of off-target specificity and cell-specific fitness of CRISPR-Cas System using attention boosted deep learning and network-based gene feature.
    Liu Q; He D; Xie L
    PLoS Comput Biol; 2019 Oct; 15(10):e1007480. PubMed ID: 31658261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Off-target predictions in CRISPR-Cas9 gene editing using deep learning.
    Lin J; Wong KC
    Bioinformatics; 2018 Sep; 34(17):i656-i663. PubMed ID: 30423072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CNN-XG: A Hybrid Framework for sgRNA On-Target Prediction.
    Li B; Ai D; Liu X
    Biomolecules; 2022 Mar; 12(3):. PubMed ID: 35327601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergizing CRISPR/Cas9 off-target predictions for ensemble insights and practical applications.
    Zhang S; Li X; Lin Q; Wong KC
    Bioinformatics; 2019 Apr; 35(7):1108-1115. PubMed ID: 30169558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. gRNA Design: How Its Evolution Impacted on CRISPR/Cas9 Systems Refinement.
    Motoche-Monar C; OrdoƱez JE; Chang O; Gonzales-Zubiate FA
    Biomolecules; 2023 Nov; 13(12):. PubMed ID: 38136570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using traditional machine learning and deep learning methods for on- and off-target prediction in CRISPR/Cas9: a review.
    Sherkatghanad Z; Abdar M; Charlier J; Makarenkov V
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37080758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AttCRISPR: a spacetime interpretable model for prediction of sgRNA on-target activity.
    Xiao LM; Wan YQ; Jiang ZR
    BMC Bioinformatics; 2021 Dec; 22(1):589. PubMed ID: 34903170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TransCrispr: Transformer Based Hybrid Model for Predicting CRISPR/Cas9 Single Guide RNA Cleavage Efficiency.
    Wan Y; Jiang Z
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):1518-1528. PubMed ID: 36006888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning improves prediction of CRISPR-Cpf1 guide RNA activity.
    Kim HK; Min S; Song M; Jung S; Choi JW; Kim Y; Lee S; Yoon S; Kim HH
    Nat Biotechnol; 2018 Mar; 36(3):239-241. PubMed ID: 29431740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome Editing with CRISPR-Cas9: Can It Get Any Better?
    Haeussler M; Concordet JP
    J Genet Genomics; 2016 May; 43(5):239-50. PubMed ID: 27210042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncertainty-aware and interpretable evaluation of Cas9-gRNA and Cas12a-gRNA specificity for fully matched and partially mismatched targets with Deep Kernel Learning.
    Kirillov B; Savitskaya E; Panov M; Ogurtsov AY; Shabalina SA; Koonin EV; Severinov KV
    Nucleic Acids Res; 2022 Jan; 50(2):e11. PubMed ID: 34791389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic tool for rapid functional characterization of CRISPR complexes.
    Peleg-Chen D; Shuvali G; Brio L; Ifrach A; Iancu O; Barbiro-Michaely E; Hendel A; Gerber D
    N Biotechnol; 2022 May; 68():1-8. PubMed ID: 35026470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cas9 Cuts and Consequences; Detecting, Predicting, and Mitigating CRISPR/Cas9 On- and Off-Target Damage: Techniques for Detecting, Predicting, and Mitigating the On- and off-target Effects of Cas9 Editing.
    Newman A; Starrs L; Burgio G
    Bioessays; 2020 Sep; 42(9):e2000047. PubMed ID: 32643177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.