These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 38177723)
1. Interpretable neural architecture search and transfer learning for understanding CRISPR-Cas9 off-target enzymatic reactions. Zhang Z; Lamson AR; Shelley M; Troyanskaya O Nat Comput Sci; 2023 Dec; 3(12):1056-1066. PubMed ID: 38177723 [TBL] [Abstract][Full Text] [Related]
2. Interpretable neural architecture search and transfer learning for understanding CRISPR/Cas9 off-target enzymatic reactions. Zhang Z; Lamson AR; Shelley M; Troyanskaya O ArXiv; 2023 Sep; ():. PubMed ID: 37808087 [TBL] [Abstract][Full Text] [Related]
3. Interpretable CRISPR/Cas9 off-target activities with mismatches and indels prediction using BERT. Luo Y; Chen Y; Xie H; Zhu W; Zhang G Comput Biol Med; 2024 Feb; 169():107932. PubMed ID: 38199209 [TBL] [Abstract][Full Text] [Related]
4. CrnnCrispr: An Interpretable Deep Learning Method for CRISPR/Cas9 sgRNA On-Target Activity Prediction. Zhu W; Xie H; Chen Y; Zhang G Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38674012 [TBL] [Abstract][Full Text] [Related]
5. R-CRISPR: A Deep Learning Network to Predict Off-Target Activities with Mismatch, Insertion and Deletion in CRISPR-Cas9 System. Niu R; Peng J; Zhang Z; Shang X Genes (Basel); 2021 Nov; 12(12):. PubMed ID: 34946828 [TBL] [Abstract][Full Text] [Related]
6. CRISPR-DIPOFF: an interpretable deep learning approach for CRISPR Cas-9 off-target prediction. Toufikuzzaman M; Hassan Samee MA; Sohel Rahman M Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38388680 [TBL] [Abstract][Full Text] [Related]
7. CROTON: an automated and variant-aware deep learning framework for predicting CRISPR/Cas9 editing outcomes. Li VR; Zhang Z; Troyanskaya OG Bioinformatics; 2021 Jul; 37(Suppl_1):i342-i348. PubMed ID: 34252931 [TBL] [Abstract][Full Text] [Related]
8. CRISPR-M: Predicting sgRNA off-target effect using a multi-view deep learning network. Sun J; Guo J; Liu J PLoS Comput Biol; 2024 Mar; 20(3):e1011972. PubMed ID: 38483980 [TBL] [Abstract][Full Text] [Related]
9. Prediction of sgRNA on-target activity in bacteria by deep learning. Wang L; Zhang J BMC Bioinformatics; 2019 Oct; 20(1):517. PubMed ID: 31651233 [TBL] [Abstract][Full Text] [Related]
10. DeepCRISTL: deep transfer learning to predict CRISPR/Cas9 functional and endogenous on-target editing efficiency. Elkayam S; Orenstein Y Bioinformatics; 2022 Jun; 38(Suppl 1):i161-i168. PubMed ID: 35758815 [TBL] [Abstract][Full Text] [Related]
11. Prediction of off-target specificity and cell-specific fitness of CRISPR-Cas System using attention boosted deep learning and network-based gene feature. Liu Q; He D; Xie L PLoS Comput Biol; 2019 Oct; 15(10):e1007480. PubMed ID: 31658261 [TBL] [Abstract][Full Text] [Related]
12. Off-target predictions in CRISPR-Cas9 gene editing using deep learning. Lin J; Wong KC Bioinformatics; 2018 Sep; 34(17):i656-i663. PubMed ID: 30423072 [TBL] [Abstract][Full Text] [Related]
13. CNN-XG: A Hybrid Framework for sgRNA On-Target Prediction. Li B; Ai D; Liu X Biomolecules; 2022 Mar; 12(3):. PubMed ID: 35327601 [TBL] [Abstract][Full Text] [Related]
14. Synergizing CRISPR/Cas9 off-target predictions for ensemble insights and practical applications. Zhang S; Li X; Lin Q; Wong KC Bioinformatics; 2019 Apr; 35(7):1108-1115. PubMed ID: 30169558 [TBL] [Abstract][Full Text] [Related]
15. gRNA Design: How Its Evolution Impacted on CRISPR/Cas9 Systems Refinement. Motoche-Monar C; OrdoƱez JE; Chang O; Gonzales-Zubiate FA Biomolecules; 2023 Nov; 13(12):. PubMed ID: 38136570 [TBL] [Abstract][Full Text] [Related]
16. AttCRISPR: a spacetime interpretable model for prediction of sgRNA on-target activity. Xiao LM; Wan YQ; Jiang ZR BMC Bioinformatics; 2021 Dec; 22(1):589. PubMed ID: 34903170 [TBL] [Abstract][Full Text] [Related]
17. TransCrispr: Transformer Based Hybrid Model for Predicting CRISPR/Cas9 Single Guide RNA Cleavage Efficiency. Wan Y; Jiang Z IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):1518-1528. PubMed ID: 36006888 [TBL] [Abstract][Full Text] [Related]
18. Deep learning improves prediction of CRISPR-Cpf1 guide RNA activity. Kim HK; Min S; Song M; Jung S; Choi JW; Kim Y; Lee S; Yoon S; Kim HH Nat Biotechnol; 2018 Mar; 36(3):239-241. PubMed ID: 29431740 [TBL] [Abstract][Full Text] [Related]
19. Genome Editing with CRISPR-Cas9: Can It Get Any Better? Haeussler M; Concordet JP J Genet Genomics; 2016 May; 43(5):239-50. PubMed ID: 27210042 [TBL] [Abstract][Full Text] [Related]
20. Uncertainty-aware and interpretable evaluation of Cas9-gRNA and Cas12a-gRNA specificity for fully matched and partially mismatched targets with Deep Kernel Learning. Kirillov B; Savitskaya E; Panov M; Ogurtsov AY; Shabalina SA; Koonin EV; Severinov KV Nucleic Acids Res; 2022 Jan; 50(2):e11. PubMed ID: 34791389 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]