These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38177786)

  • 81. Data Mining Meets Machine Learning: A Novel ANN-based Multi-body Interaction Docking Scoring Function (MBI-score) Based on Utilizing Frequent Geometric and Chemical Patterns of Interfacial Atoms in Native Protein-ligand Complexes.
    Khashan R; Tropsha A; Zheng W
    Mol Inform; 2022 Aug; 41(8):e2100248. PubMed ID: 35142086
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Fragmented blind docking: a novel protein-ligand binding prediction protocol.
    Grasso G; Di Gregorio A; Mavkov B; Piga D; Labate GFD; Danani A; Deriu MA
    J Biomol Struct Dyn; 2022; 40(24):13472-13481. PubMed ID: 34641761
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Multiple grid arrangement improves ligand docking with unknown binding sites: Application to the inverse docking problem.
    Ban T; Ohue M; Akiyama Y
    Comput Biol Chem; 2018 Apr; 73():139-146. PubMed ID: 29482137
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Protein flexibility in ligand docking and virtual screening to protein kinases.
    Cavasotto CN; Abagyan RA
    J Mol Biol; 2004 Mar; 337(1):209-25. PubMed ID: 15001363
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Multitask deep networks with grid featurization achieve improved scoring performance for protein-ligand binding.
    Xie L; Xu L; Chang S; Xu X; Meng L
    Chem Biol Drug Des; 2020 Sep; 96(3):973-983. PubMed ID: 33058459
    [TBL] [Abstract][Full Text] [Related]  

  • 86. A cross docking pipeline for improving pose prediction and virtual screening performance.
    Kumar A; Zhang KYJ
    J Comput Aided Mol Des; 2018 Jan; 32(1):163-173. PubMed ID: 28836076
    [TBL] [Abstract][Full Text] [Related]  

  • 87. CSConv2d: A 2-D Structural Convolution Neural Network with a Channel and Spatial Attention Mechanism for Protein-Ligand Binding Affinity Prediction.
    Wang X; Liu D; Zhu J; Rodriguez-Paton A; Song T
    Biomolecules; 2021 Apr; 11(5):. PubMed ID: 33925310
    [TBL] [Abstract][Full Text] [Related]  

  • 88. GWOVina: A grey wolf optimization approach to rigid and flexible receptor docking.
    Wong KM; Tai HK; Siu SWI
    Chem Biol Drug Des; 2021 Jan; 97(1):97-110. PubMed ID: 32679606
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Target-specific native/decoy pose classifier improves the accuracy of ligand ranking in the CSAR 2013 benchmark.
    Fourches D; Politi R; Tropsha A
    J Chem Inf Model; 2015 Jan; 55(1):63-71. PubMed ID: 25521713
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Comprehensive Survey of Consensus Docking for High-Throughput Virtual Screening.
    Blanes-Mira C; Fernández-Aguado P; de Andrés-López J; Fernández-Carvajal A; Ferrer-Montiel A; Fernández-Ballester G
    Molecules; 2022 Dec; 28(1):. PubMed ID: 36615367
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Deep Learning in Drug Design: Protein-Ligand Binding Affinity Prediction.
    Rezaei MA; Li Y; Wu D; Li X; Li C
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):407-417. PubMed ID: 33360998
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Deffini: A family-specific deep neural network model for structure-based virtual screening.
    Zhou D; Liu F; Zheng Y; Hu L; Huang T; Huang YS
    Comput Biol Med; 2022 Dec; 151(Pt B):106323. PubMed ID: 36436482
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Open-ComBind: harnessing unlabeled data for improved binding pose prediction.
    McNutt AT; Koes DR
    J Comput Aided Mol Des; 2023 Dec; 38(1):3. PubMed ID: 38062207
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Binding affinity prediction for protein-ligand complex using deep attention mechanism based on intermolecular interactions.
    Seo S; Choi J; Park S; Ahn J
    BMC Bioinformatics; 2021 Nov; 22(1):542. PubMed ID: 34749664
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Relative assessment of different statistical instruments and measures for the prediction of promising outcomes using docking, virtual screening and ADMET analysis against HIV-RT.
    Shamshad H; Saeed M; Ul-Haq Z; Halim SA; Gul S; Mirza AZ
    J Biomol Struct Dyn; 2022 Oct; 40(17):7680-7692. PubMed ID: 33779506
    [TBL] [Abstract][Full Text] [Related]  

  • 96. GalaxyDock2: protein-ligand docking using beta-complex and global optimization.
    Shin WH; Kim JK; Kim DS; Seok C
    J Comput Chem; 2013 Nov; 34(30):2647-56. PubMed ID: 24108416
    [TBL] [Abstract][Full Text] [Related]  

  • 97. FRAGSITE2: A structure and fragment-based approach for virtual ligand screening.
    Zhou H; Skolnick J
    Protein Sci; 2024 Jan; 33(1):e4869. PubMed ID: 38100293
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Predicting ligand binding modes from neural networks trained on protein-ligand interaction fingerprints.
    Chupakhin V; Marcou G; Baskin I; Varnek A; Rognan D
    J Chem Inf Model; 2013 Apr; 53(4):763-72. PubMed ID: 23480697
    [TBL] [Abstract][Full Text] [Related]  

  • 99. A systematic pipeline of protein structure selection for computer-aided drug discovery: A case study on T790M/L858R mutant EGFR structures.
    Das AP; Nandekar P; Mathur P; Agarwal SM
    Protein Sci; 2023 Sep; 32(9):e4740. PubMed ID: 37515373
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Ligand Binding Prediction Using Protein Structure Graphs and Residual Graph Attention Networks.
    Pandey M; Radaeva M; Mslati H; Garland O; Fernandez M; Ester M; Cherkasov A
    Molecules; 2022 Aug; 27(16):. PubMed ID: 36014351
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.