These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 38178190)
1. Rich-Carbonyl Carbon Catalysis Facilitating the Li Wu Y; Ju J; Shen B; Wei J; Jiang H; Li C; Hu Y Small; 2024 Jun; 20(24):e2311891. PubMed ID: 38178190 [TBL] [Abstract][Full Text] [Related]
2. Li Li C; Xiao Y; Zhang X; Cheng H; Cheng YJ; Xia Y ACS Appl Mater Interfaces; 2023 Sep; 15(38):44921-44931. PubMed ID: 37708444 [TBL] [Abstract][Full Text] [Related]
3. Lattice Engineering on Li Zhu Y; Chen Y; Chen J; Yin J; Sun Z; Zeng G; Wu X; Chen L; Yu X; Luo H; Yan Y; Zhang H; Zhang B; Kuai X; Tang Y; Xu J; Yin W; Qiu Y; Zhang Q; Qiao Y; Sun SG Adv Mater; 2024 Mar; 36(13):e2312159. PubMed ID: 38117030 [TBL] [Abstract][Full Text] [Related]
4. Core-Shell Structured o-LiMnO2@Li2CO3 Nanosheet Array Cathode for High-Performance, Wide-Temperature-Tolerance Lithium-Ion Batteries. Guo J; Cai Y; Zhang S; Chen S; Zhang F ACS Appl Mater Interfaces; 2016 Jun; 8(25):16116-24. PubMed ID: 27270124 [TBL] [Abstract][Full Text] [Related]
5. Complete Decomposition of Li Song S; Xu W; Zheng J; Luo L; Engelhard MH; Bowden ME; Liu B; Wang CM; Zhang JG Nano Lett; 2017 Mar; 17(3):1417-1424. PubMed ID: 28186765 [TBL] [Abstract][Full Text] [Related]
6. A Molecularly Engineered Cathode Lithium Compensation Agent for High Energy Density Batteries. Wu W; Wang A; Zhan Q; Hu Z; Tang W; Zhang L; Luo J Small; 2023 Jul; 19(28):e2301737. PubMed ID: 37191324 [TBL] [Abstract][Full Text] [Related]
7. Enhanced electrochemical properties of potassium-doped lithium-rich oxide@carbon as cathode material for lithium-ion batteries. Cheng Y; Wu Z; Dai X; Hu J; Tai Z; Sun J; Liu Y; Tan Q; Liu Y J Colloid Interface Sci; 2022 Jan; 605():718-726. PubMed ID: 34365308 [TBL] [Abstract][Full Text] [Related]
8. Electrolyte Regulation in Stabilizing the Interface of a Cobalt-Free Layered Cathode for 4.8 V High-Voltage Lithium-Ion Batteries. Ma M; Zhu Z; Yang D; Qie L; Huang Z; Huang Y ACS Appl Mater Interfaces; 2024 Mar; 16(10):12554-12562. PubMed ID: 38422353 [TBL] [Abstract][Full Text] [Related]
9. Activated Co in Thiospinel Boosting Li Chen Y; Li J; Lu B; Liu Y; Mao R; Song Y; Li H; Yu X; Gao Y; Peng Q; Qi X; Zhou G Adv Mater; 2024 Oct; 36(40):e2406856. PubMed ID: 39177199 [TBL] [Abstract][Full Text] [Related]
10. Deciphering the Enigma of Li Jiang F; Ma L; Sun J; Guo L; Peng Z; Cui Z; Li Y; Guo X; Zhang T ACS Appl Mater Interfaces; 2021 Mar; 13(12):14321-14326. PubMed ID: 33749227 [TBL] [Abstract][Full Text] [Related]
11. Fluorinated High-Voltage Electrolytes To Stabilize Nickel-Rich Lithium Batteries. Poches C; Razzaq AA; Studer H; Ogilvie R; Lama B; Paudel TR; Li X; Pupek K; Xing W ACS Appl Mater Interfaces; 2023 Sep; 15(37):43648-43655. PubMed ID: 37696006 [TBL] [Abstract][Full Text] [Related]
12. Effects of Central Metal Ion on Binuclear Metal Phthalocyanine-Based Redox Mediator for Lithium Carbonate Decomposition. Yan Q; Yan L; Huang H; Chen Z; Liu Z; Zhou S; He H Molecules; 2024 Apr; 29(9):. PubMed ID: 38731525 [TBL] [Abstract][Full Text] [Related]
13. Spinel Zinc Cobalt Oxide (ZnCo Thoka S; Chen CJ; Jena A; Wang FM; Wang XC; Chang H; Hu SF; Liu RS ACS Appl Mater Interfaces; 2020 Apr; 12(15):17353-17363. PubMed ID: 32202752 [TBL] [Abstract][Full Text] [Related]
14. Commercially Viable Hybrid Li-Ion/Metal Batteries with High Energy Density Realized by Symbiotic Anode and Prelithiated Cathode. Lin K; Xu X; Qin X; Liu M; Zhao L; Yang Z; Liu Q; Ye Y; Chen G; Kang F; Li B Nanomicro Lett; 2022 Jul; 14(1):149. PubMed ID: 35869171 [TBL] [Abstract][Full Text] [Related]
15. Origin of Carbon Dioxide Evolved during Cycling of Nickel-Rich Layered NCM Cathodes. Hatsukade T; Schiele A; Hartmann P; Brezesinski T; Janek J ACS Appl Mater Interfaces; 2018 Nov; 10(45):38892-38899. PubMed ID: 30335934 [TBL] [Abstract][Full Text] [Related]
16. Tailoring electrolyte enables high-voltage Ni-rich NCM cathode against aggressive cathode chemistries for Li-ion batteries. Cheng F; Zhang X; Wei P; Sun S; Xu Y; Li Q; Fang C; Han J; Huang Y Sci Bull (Beijing); 2022 Nov; 67(21):2225-2234. PubMed ID: 36545998 [TBL] [Abstract][Full Text] [Related]
17. Surface Chemistry Li L; Fang C; He G; Huang Y ACS Appl Mater Interfaces; 2023 Aug; 15(30):36344-36355. PubMed ID: 37481746 [TBL] [Abstract][Full Text] [Related]
18. A Scalable Cathode Chemical Prelithiation Strategy for Advanced Silicon-Based Lithium Ion Full Batteries. Liu Z; Ma S; Mu X; Li R; Yin G; Zuo P ACS Appl Mater Interfaces; 2021 Mar; 13(10):11985-11994. PubMed ID: 33683090 [TBL] [Abstract][Full Text] [Related]
19. Boosting Sodium Compensation Efficiency via a CNT/MnO He WH; Guo YJ; Wang EH; Ding L; Chang X; Chang YX; Lei ZQ; Xin S; Li H; Wang B; Zhang QY; Xu L; Yin YX; Guo YG ACS Appl Mater Interfaces; 2024 Apr; 16(15):18971-18979. PubMed ID: 38578663 [TBL] [Abstract][Full Text] [Related]
20. Formation/Decomposition of Li Liu Y; Wang K; Peng X; Wang C; Fang W; Zhu Y; Chen Y; Liu L; Wu Y ACS Appl Mater Interfaces; 2022 Apr; 14(14):16214-16221. PubMed ID: 35357809 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]