These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 38178190)
21. A Highly Reversible Long-Life Li-CO Guo Z; Li J; Qi H; Sun X; Li H; Tamirat AG; Liu J; Wang Y; Wang L Small; 2019 Jul; 15(29):e1803246. PubMed ID: 30345634 [TBL] [Abstract][Full Text] [Related]
22. Facile Formation of a LiF-Carbon Layer as an Artificial Cathodic Electrolyte Interphase through Encapsulation of a Cathode with Carbon Monofluoride. Lim JH; Myung Y; Yang M; Lee JW ACS Appl Mater Interfaces; 2021 Jul; 13(27):31741-31748. PubMed ID: 34185502 [TBL] [Abstract][Full Text] [Related]
23. Synergetic Effects of Inorganic Components in Solid Electrolyte Interphase on High Cycle Efficiency of Lithium Ion Batteries. Zhang Q; Pan J; Lu P; Liu Z; Verbrugge MW; Sheldon BW; Cheng YT; Qi Y; Xiao X Nano Lett; 2016 Mar; 16(3):2011-6. PubMed ID: 26889564 [TBL] [Abstract][Full Text] [Related]
24. Polyacrylonitrile Porous Membrane-Based Gel Polymer Electrolyte by In Situ Free-Radical Polymerization for Stable Li Metal Batteries. Shen Z; Zhong J; Jiang S; Xie W; Zhan S; Lin K; Zeng L; Hu H; Lin G; Lin Y; Sun S; Shi Z ACS Appl Mater Interfaces; 2022 Sep; 14(36):41022-41036. PubMed ID: 36044767 [TBL] [Abstract][Full Text] [Related]
25. LiMn Hou YK; Pan GL; Sun YY; Gao XP ACS Appl Mater Interfaces; 2018 May; 10(19):16500-16510. PubMed ID: 29693376 [TBL] [Abstract][Full Text] [Related]
26. Lithium Sulfide-Carbon Composites via Aerosol Spray Pyrolysis as Cathode Materials for Lithium-Sulfur Batteries. Hart N; Shi J; Zhang J; Fu C; Guo J Front Chem; 2018; 6():476. PubMed ID: 30356846 [TBL] [Abstract][Full Text] [Related]
27. Alleviating Surface Degradation of Nickel-Rich Layered Oxide Cathode Material by Encapsulating with Nanoscale Li-Ions/Electrons Superionic Conductors Hybrid Membrane for Advanced Li-Ion Batteries. Li L; Xu M; Yao Q; Chen Z; Song L; Zhang Z; Gao C; Wang P; Yu Z; Lai Y ACS Appl Mater Interfaces; 2016 Nov; 8(45):30879-30889. PubMed ID: 27805812 [TBL] [Abstract][Full Text] [Related]
28. Unraveling the Dynamic Interfacial Behavior of LiCoO Hong M; Lee S; Ho VC; Lee D; Yu SH; Mun J ACS Appl Mater Interfaces; 2022 Mar; 14(8):10267-10276. PubMed ID: 35188752 [TBL] [Abstract][Full Text] [Related]
29. Improving Electrochemical Performance of Thick Silicon Film Anodes with Implanted Solid Lithium Source Electrolyte. Yu Z; Zhou L; Tong J; Guan T; Cheng Y J Phys Chem Lett; 2022 Sep; 13(37):8725-8732. PubMed ID: 36094819 [TBL] [Abstract][Full Text] [Related]
30. Electrochemical Performance and Microstructure Evolution of a Quasi-Solid-State Lithium Battery Prepared by Spark Plasma Sintering. Li J; Tong H; Zhou W; Liu J; Song X ACS Appl Mater Interfaces; 2024 Feb; 16(6):8045-8054. PubMed ID: 38316124 [TBL] [Abstract][Full Text] [Related]
31. Recovery of value-added products from cathode and anode material of spent lithium-ion batteries. Natarajan S; Boricha AB; Bajaj HC Waste Manag; 2018 Jul; 77():455-465. PubMed ID: 29706480 [TBL] [Abstract][Full Text] [Related]
32. Carbon Nanotube@RuO Bie S; Du M; He W; Zhang H; Yu Z; Liu J; Liu M; Yan W; Zhou L; Zou Z ACS Appl Mater Interfaces; 2019 Feb; 11(5):5146-5151. PubMed ID: 30640419 [TBL] [Abstract][Full Text] [Related]
33. Fluorinating All Interfaces Enables Super-Stable Solid-State Lithium Batteries by In Situ Conversion of Detrimental Surface Li Guo Y; Pan S; Yi X; Chi S; Yin X; Geng C; Yin Q; Zhan Q; Zhao Z; Jin FM; Fang H; He YB; Kang F; Wu S; Yang QH Adv Mater; 2024 Mar; 36(13):e2308493. PubMed ID: 38134134 [TBL] [Abstract][Full Text] [Related]
34. Constructing LiF/Li Hu X; Li Y; Liu J; Wang Z; Bai Y; Ma J Sci Bull (Beijing); 2023 Jun; 68(12):1295-1305. PubMed ID: 37246033 [TBL] [Abstract][Full Text] [Related]
35. A nanostructured porous carbon/MoO Zhou HY; Sui ZY; Zhao FL; Sun YN; Wang HY; Han BH Nanotechnology; 2020 Jul; 31(31):315601. PubMed ID: 32294640 [TBL] [Abstract][Full Text] [Related]
36. Nanofibrous Cathode Catalysts with MoC Nanoparticles Embedded in N-Rich Carbon Shells for Low-Overpotential Li-CO Zhu QC; He ZR; Mao DY; Lu WN; Yi SL; Wang KX ACS Appl Mater Interfaces; 2022 Aug; 14(33):38090-38097. PubMed ID: 35969679 [TBL] [Abstract][Full Text] [Related]
37. New Insights into the Mechanism of LiDFBOP for Improving the Low-Temperature Performance Song G; Yi Z; Su F; Xie L; Chen C ACS Appl Mater Interfaces; 2021 Aug; 13(33):40042-40052. PubMed ID: 34387458 [TBL] [Abstract][Full Text] [Related]
38. Enabling high-performance lithium iron phosphate cathodes through an interconnected carbon network for practical and high-energy lithium-ion batteries. Li B; Xiao J; Zhu X; Wu Z; Zhang X; Han Y; Niu J; Wang F J Colloid Interface Sci; 2024 Jan; 653(Pt A):942-948. PubMed ID: 37774657 [TBL] [Abstract][Full Text] [Related]
39. Nitrogen/oxygen codoped hierarchical porous Carbons/Selenium cathode with excellent lithium and sodium storage behavior. Zhao Q; Meng Y; Su L; Cen W; Wang Q; Xiao D J Colloid Interface Sci; 2022 Feb; 608(Pt 1):265-274. PubMed ID: 34626973 [TBL] [Abstract][Full Text] [Related]
40. Organosulfides: An Emerging Class of Cathode Materials for Rechargeable Lithium Batteries. Wang DY; Guo W; Fu Y Acc Chem Res; 2019 Aug; 52(8):2290-2300. PubMed ID: 31386341 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]