These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38178385)

  • 1. Coherent Doppler LIDAR with long-duration frequency-modulated pulses for wind sensing.
    Yoshikawa E; Yamasuge H; Aoki M; Iwai H; Nakano T; Oikawa H; Ushio T; Ishii S; Chandrasekar V
    Opt Express; 2023 Dec; 31(26):42730-42743. PubMed ID: 38178385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wind turbine wake visualization and characteristics analysis by Doppler lidar.
    Wu S; Liu B; Liu J; Zhai X; Feng C; Wang G; Zhang H; Yin J; Wang X; Li R; Gallacher D
    Opt Express; 2016 May; 24(10):A762-80. PubMed ID: 27409950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous wind and rainfall detection by power spectrum analysis using a VAD scanning coherent Doppler lidar.
    Wei T; Xia H; Hu J; Wang C; Shangguan M; Wang L; Jia M; Dou X
    Opt Express; 2019 Oct; 27(22):31235-31245. PubMed ID: 31684359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance analysis of dual-frequency lidar in the detection of the complex wind field.
    Xu H; Li J
    Opt Express; 2021 Jul; 29(15):23524-23539. PubMed ID: 34614617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intelligent and compact coherent Doppler lidar with fiber-based configuration for robust wind sensing in various atmospheric and environmental conditions.
    Kotake N; Sakamaki H; Imaki M; Miwa Y; Ando T; Yabugaki Y; Enjo M; Kameyama S
    Opt Express; 2022 May; 30(11):20038-20062. PubMed ID: 36221764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Hardware Implemented Autocorrelation Technique for Estimating Power Spectral Density for Processing Signals from a Doppler Wind Lidar System.
    Abdelazim S; Santoro D; Arend M; Moshary F; Ahmed S
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30486511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Field performance of an all-semiconductor laser coherent Doppler lidar.
    Rodrigo PJ; Pedersen C
    Opt Lett; 2012 Jun; 37(12):2277-9. PubMed ID: 22739880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fine gust front structure observed by coherent Doppler lidar at Lanzhou Airport (103°49$^{\prime}$
    Han Y; Liu J; Sun D; Han F; Zhou A; Zhao R; Xue X; Chen T; Zhen F; Lu Y
    Appl Opt; 2020 Mar; 59(9):2686-2694. PubMed ID: 32225816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical single-sideband modulation for a coherent Doppler lidar.
    Wolfe S; Shirahata T; Set SY; Yamashita S
    Opt Lett; 2022 Sep; 47(17):4520-4523. PubMed ID: 36048694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial resolution enhancement of coherent Doppler wind lidar using differential correlation pair technique.
    Zhang Y; Wu Y; Xia H
    Opt Lett; 2021 Nov; 46(22):5550-5553. PubMed ID: 34780401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wind profiling for a coherent wind Doppler lidar by an auto-adaptive background subtraction approach.
    Wu Y; Guo P; Chen S; Chen H; Zhang Y
    Appl Opt; 2017 Apr; 56(10):2705-2713. PubMed ID: 28375232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 1.55-μm high-peak, high-average-power laser amplifier using an Er,Yb:glass planar waveguide for wind sensing coherent Doppler lidar.
    Sakimura T; Hirosawa K; Watanabe Y; Ando T; Kameyama S; Asaka K; Tanaka H; Furuta M; Hagio M; Hirano Y; Inokuchi H; Yanagisawa T
    Opt Express; 2019 Aug; 27(17):24175-24187. PubMed ID: 31510311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remote sensing of raindrop size distribution using the coherent Doppler lidar.
    Wei T; Xia H; Yue B; Wu Y; Liu Q
    Opt Express; 2021 May; 29(11):17246-17257. PubMed ID: 34154270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 1.5 μm polarization coherent lidar incorporating time-division multiplexing.
    Wang C; Xia H; Shangguan M; Wu Y; Wang L; Zhao L; Qiu J; Zhang R
    Opt Express; 2017 Aug; 25(17):20663-20674. PubMed ID: 29041745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Method of radial velocities for the estimation of aircraft wake vortex parameters from data measured by coherent Doppler lidar.
    Smalikho IN; Banakh VA; Holzäpfel F; Rahm S
    Opt Express; 2015 Sep; 23(19):A1194-207. PubMed ID: 26406749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vertical wind velocity measurements by a Doppler lidar and comparisons with a Doppler sodar.
    Congeduti F; Fiocco G; Adriani A; Guarrella C
    Appl Opt; 1981 Jun; 20(12):2048-54. PubMed ID: 20332885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of phase-induced intensity noise in a fiber-based coherent Doppler lidar using polarization control.
    Rodrigo PJ; Pedersen C
    Opt Express; 2010 Mar; 18(5):5320-7. PubMed ID: 20389545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aircraft wake vortex and turbulence measurement under near-ground effect using coherent Doppler lidar.
    Wu S; Zhai X; Liu B
    Opt Express; 2019 Jan; 27(2):1142-1163. PubMed ID: 30696183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Denoising coherent Doppler lidar data based on a U-Net convolutional neural network.
    Song Y; Han Y; Su Z; Chen C; Sun D; Chen T; Xue X
    Appl Opt; 2024 Jan; 63(1):275-282. PubMed ID: 38175030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coherent Doppler lidar signal spectrum with wind turbulence.
    Frehlich R; Cornman L
    Appl Opt; 1999 Dec; 38(36):7456-66. PubMed ID: 18324299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.