These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 38178617)

  • 1. Protein constraints in genome-scale metabolic models: Data integration, parameter estimation, and prediction of metabolic phenotypes.
    Ferreira MAM; Silveira WBD; Nikoloski Z
    Biotechnol Bioeng; 2024 Mar; 121(3):915-930. PubMed ID: 38178617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of an enzyme-constrained metabolic network model for Myceliophthora thermophila using machine learning-based k
    Wang Y; Mao Z; Dong J; Zhang P; Gao Q; Liu D; Tian C; Ma H
    Microb Cell Fact; 2024 May; 23(1):138. PubMed ID: 38750569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data integration across conditions improves turnover number estimates and metabolic predictions.
    Wendering P; Arend M; Razaghi-Moghadam Z; Nikoloski Z
    Nat Commun; 2023 Mar; 14(1):1485. PubMed ID: 36932067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interrogating the effect of enzyme kinetics on metabolism using differentiable constraint-based models.
    Wilken SE; Besançon M; Kratochvíl M; Foko Kuate CA; Trefois C; Gu W; Ebenhöh O
    Metab Eng; 2022 Nov; 74():72-82. PubMed ID: 36152931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of microbial growth rate versus biomass yield by a metabolic network with kinetic parameters.
    Adadi R; Volkmer B; Milo R; Heinemann M; Shlomi T
    PLoS Comput Biol; 2012; 8(7):e1002575. PubMed ID: 22792053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models.
    Heckmann D; Lloyd CJ; Mih N; Ha Y; Zielinski DC; Haiman ZB; Desouki AA; Lercher MJ; Palsson BO
    Nat Commun; 2018 Dec; 9(1):5252. PubMed ID: 30531987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic construction of metabolic models with enzyme constraints.
    Bekiaris PS; Klamt S
    BMC Bioinformatics; 2020 Jan; 21(1):19. PubMed ID: 31937255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing Escherichia coli metabolism models and simulation approaches in phenotype predictions: Validation against experimental data.
    Costa RS; Vinga S
    Biotechnol Prog; 2018 Nov; 34(6):1344-1354. PubMed ID: 30294889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of enzymatic data in Bacillus subtilis genome-scale metabolic model improves phenotype predictions and enables in silico design of poly-γ-glutamic acid production strains.
    Massaiu I; Pasotti L; Sonnenschein N; Rama E; Cavaletti M; Magni P; Calvio C; Herrgård MJ
    Microb Cell Fact; 2019 Jan; 18(1):3. PubMed ID: 30626384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ECMpy, a Simplified Workflow for Constructing Enzymatic Constrained Metabolic Network Model.
    Mao Z; Zhao X; Yang X; Zhang P; Du J; Yuan Q; Ma H
    Biomolecules; 2022 Jan; 12(1):. PubMed ID: 35053213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction and integration of metabolite-protein interactions with genome-scale metabolic models.
    Habibpour M; Razaghi-Moghadam Z; Nikoloski Z
    Metab Eng; 2024 Mar; 82():216-224. PubMed ID: 38367764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of enzyme constraints in a genome-scale metabolic model of Aspergillus niger improves phenotype predictions.
    Zhou J; Zhuang Y; Xia J
    Microb Cell Fact; 2021 Jun; 20(1):125. PubMed ID: 34193117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study of a diauxic growth experiment using an expanded dynamic flux balance framework.
    Karlsen E; Gylseth M; Schulz C; Almaas E
    PLoS One; 2023; 18(1):e0280077. PubMed ID: 36607958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic analysis of multi-omics datasets to generate kinetic parameters for constraint-based metabolic models.
    Cotten C; Reed JL
    BMC Bioinformatics; 2013 Jan; 14():32. PubMed ID: 23360254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical models of plant metabolism.
    Shi H; Schwender J
    Curr Opin Biotechnol; 2016 Feb; 37():143-152. PubMed ID: 26723012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Development of metabolic models with multiple constraints: a review].
    Yang X; Zhang P; Mao Z; Zhao X; Wang R; Cai J; Wang Z; Ma H
    Sheng Wu Gong Cheng Xue Bao; 2022 Feb; 38(2):531-545. PubMed ID: 35234380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine Learning and Hybrid Methods for Metabolic Pathway Modeling.
    Cuperlovic-Culf M; Nguyen-Tran T; Bennett SAL
    Methods Mol Biol; 2023; 2553():417-439. PubMed ID: 36227553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-scale metabolic networks.
    Terzer M; Maynard ND; Covert MW; Stelling J
    Wiley Interdiscip Rev Syst Biol Med; 2009; 1(3):285-297. PubMed ID: 20835998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced flux prediction by integrating relative expression and relative metabolite abundance into thermodynamically consistent metabolic models.
    Pandey V; Hadadi N; Hatzimanikatis V
    PLoS Comput Biol; 2019 May; 15(5):e1007036. PubMed ID: 31083653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of probabilistic regulatory networks into constraint-based models of metabolism with applications to Alzheimer's disease.
    Yu H; Blair RH
    BMC Bioinformatics; 2019 Jul; 20(1):386. PubMed ID: 31291905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.