These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 38178653)
1. Unraveling the Nanoscale Segregation Mechanism in N-Doped Niobium for Enhanced SRF Performance. Chen Z; Zong Y; Chai Y; E M; He Y; Shi S; Cai J; Zhang Q; Li J; Chen J; Liu X; Wang ZJ; Wang D; Liu Z Small Methods; 2024 Aug; 8(8):e2301319. PubMed ID: 38178653 [TBL] [Abstract][Full Text] [Related]
2. Suppression of nano-hydride growth on Nb(100) due to nitrogen doping. Veit RD; Farber RG; Sitaraman NS; Arias TA; Sibener SJ J Chem Phys; 2020 Jun; 152(21):214703. PubMed ID: 32505166 [TBL] [Abstract][Full Text] [Related]
3. Investigation into surface composition of nitrogen-doped niobium for superconducting RF cavities. Yang L; Liu B; Ye Z; Yang C; Wang Z; Chen B; Chen J; Sha P; Dong C; Zhu J; Li Z; Yan R; Ding R; Zhang K; Gou F Nanotechnology; 2021 Mar; 32(24):. PubMed ID: 33657546 [TBL] [Abstract][Full Text] [Related]
4. Design and performance of a new induction furnace for heat treatment of superconducting radiofrequency niobium cavities. Dhakal P; Ciovati G; Rigby W; Wallace J; Myneni GR Rev Sci Instrum; 2012 Jun; 83(6):065105. PubMed ID: 22755660 [TBL] [Abstract][Full Text] [Related]
5. Temperature-dependent near-surface interstitial segregation in niobium. Dalla Lana Semione G; Vonk V; Pandey AD; Grånäs E; Arndt B; Wenskat M; Hillert W; Noei H; Stierle A J Phys Condens Matter; 2021 May; 33(26):. PubMed ID: 33878738 [TBL] [Abstract][Full Text] [Related]
6. Direct evidence of microstructure dependence of magnetic flux trapping in niobium. Balachandran S; Polyanskii A; Chetri S; Dhakal P; Su YF; Sung ZH; Lee PJ Sci Rep; 2021 Mar; 11(1):5364. PubMed ID: 33686195 [TBL] [Abstract][Full Text] [Related]
8. Direct atomic-scale imaging of hydrogen and oxygen interstitials in pure niobium using atom-probe tomography and aberration-corrected scanning transmission electron microscopy. Kim YJ; Tao R; Klie RF; Seidman DN ACS Nano; 2013 Jan; 7(1):732-9. PubMed ID: 23259811 [TBL] [Abstract][Full Text] [Related]
9. Nitridation of niobium oxide films by rapid thermal processing. Matylitskaya VA; Bock W; Kolbesen BO Anal Bioanal Chem; 2008 Mar; 390(6):1507-15. PubMed ID: 18253725 [TBL] [Abstract][Full Text] [Related]
11. Field-Enhanced Superconductivity in High-Frequency Niobium Accelerating Cavities. Martinello M; Checchin M; Romanenko A; Grassellino A; Aderhold S; Chandrasekeran SK; Melnychuk O; Posen S; Sergatskov DA Phys Rev Lett; 2018 Nov; 121(22):224801. PubMed ID: 30547616 [TBL] [Abstract][Full Text] [Related]
12. Direct current magnetic Hall probe technique for measurement of field penetration in thin film superconductors for superconducting radio frequency resonators. Senevirathne IH; Gurevich A; Delayen JR Rev Sci Instrum; 2022 May; 93(5):055104. PubMed ID: 35649811 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of the Propensity of Niobium to Absorb Hydrogen During Fabrication of Superconducting Radio Frequency Cavities for Particle Accelerators. Ricker RE; Myneni GR J Res Natl Inst Stand Technol; 2010; 115(5):353-71. PubMed ID: 27134791 [TBL] [Abstract][Full Text] [Related]
14. Magnesium diboride coated bulk niobium: a new approach to higher acceleration gradient. Tan T; Wolak MA; Xi XX; Tajima T; Civale L Sci Rep; 2016 Oct; 6():35879. PubMed ID: 27775087 [TBL] [Abstract][Full Text] [Related]
15. Nb Eremeev G; Clemens W; Macha K; Reece CE; Valente-Feliciano AM; Williams S; Pudasaini U; Kelley M Rev Sci Instrum; 2020 Jul; 91(7):073911. PubMed ID: 32752803 [TBL] [Abstract][Full Text] [Related]
16. Radio Frequency Magnetic Field Limits of Nb and Nb_{3}Sn. Posen S; Valles N; Liepe M Phys Rev Lett; 2015 Jul; 115(4):047001. PubMed ID: 26252705 [TBL] [Abstract][Full Text] [Related]
17. High-temperature treatments of niobium under high vacuum, dilute air- and nitrogen-atmospheres as investigated by in situ X-ray absorption spectroscopy. Klaes J; Rothweiler P; Bornmann B; Wagner R; Lützenkirchen-Hecht D J Synchrotron Radiat; 2021 Jan; 28(Pt 1):266-277. PubMed ID: 33399577 [TBL] [Abstract][Full Text] [Related]
18. Microstructure and Hydrothermal Stability of Microporous Niobia-Silica Membranes: Effect of Niobium Doping Contents. Xia J; Yang J; Zhang H; Guo Y; Zhang R Membranes (Basel); 2022 May; 12(5):. PubMed ID: 35629853 [TBL] [Abstract][Full Text] [Related]
19. Understanding Quality Factor Degradation in Superconducting Niobium Cavities at Low Microwave Field Amplitudes. Romanenko A; Schuster DI Phys Rev Lett; 2017 Dec; 119(26):264801. PubMed ID: 29328733 [TBL] [Abstract][Full Text] [Related]
20. Niobium nitride films formed by rapid thermal processing (RTP): a study of depth profiles and interface reactions by complementary analytical techniques. Berendes A; Brunkahl O; Angelkort C; Bock W; Hofer F; Warbichler P; Kolbesen BO Anal Bioanal Chem; 2004 Jun; 379(4):554-67. PubMed ID: 15098081 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]