These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 38179503)

  • 21. MFAP4 deficiency alleviates renal fibrosis through inhibition of NF-κB and TGF-β/Smad signaling pathways.
    Pan Z; Yang K; Wang H; Xiao Y; Zhang M; Yu X; Xu T; Bai T; Zhu H
    FASEB J; 2020 Nov; 34(11):14250-14263. PubMed ID: 32905637
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanism of action of non-coding RNAs and traditional Chinese medicine in myocardial fibrosis: Focus on the TGF-β/Smad signaling pathway.
    Li C; Meng X; Wang L; Dai X
    Front Pharmacol; 2023; 14():1092148. PubMed ID: 36843918
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Statins inhibit angiotensin II/Smad pathway and related vascular fibrosis, by a TGF-β-independent process.
    Rodrigues Díez R; Rodrigues-Díez R; Lavoz C; Rayego-Mateos S; Civantos E; Rodríguez-Vita J; Mezzano S; Ortiz A; Egido J; Ruiz-Ortega M
    PLoS One; 2010 Nov; 5(11):e14145. PubMed ID: 21152444
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Endothelial to Mesenchymal Transition in Pulmonary Vascular Diseases.
    Yun E; Kook Y; Yoo KH; Kim KI; Lee MS; Kim J; Lee A
    Biomedicines; 2020 Dec; 8(12):. PubMed ID: 33371458
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Suppression of Cavernosal Fibrosis in a Rat Model.
    Cho MC; Song WH; Paick JS
    Sex Med Rev; 2018 Oct; 6(4):572-582. PubMed ID: 29631978
    [TBL] [Abstract][Full Text] [Related]  

  • 26. TGF-β/Smad and Renal Fibrosis.
    Ma TT; Meng XM
    Adv Exp Med Biol; 2019; 1165():347-364. PubMed ID: 31399973
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Angiotensin II activates the Smad pathway in vascular smooth muscle cells by a transforming growth factor-beta-independent mechanism.
    Rodríguez-Vita J; Sánchez-López E; Esteban V; Rupérez M; Egido J; Ruiz-Ortega M
    Circulation; 2005 May; 111(19):2509-17. PubMed ID: 15883213
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anti-fibrotic effects of synthetic TGF-β1 and Smad oligodeoxynucleotide on kidney fibrosis in vivo and in vitro through inhibition of both epithelial dedifferentiation and endothelial-mesenchymal transitions.
    Gwon MG; An HJ; Kim JY; Kim WH; Gu H; Kim HJ; Leem J; Jung HJ; Park KK
    FASEB J; 2020 Jan; 34(1):333-349. PubMed ID: 31914629
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ganoderma lucidum polysaccharide inhibits HSC activation and liver fibrosis via targeting inflammation, apoptosis, cell cycle, and ECM-receptor interaction mediated by TGF-β/Smad signaling.
    Chen C; Chen J; Wang Y; Fang L; Guo C; Sang T; Peng H; Zhao Q; Chen S; Lin X; Wang X
    Phytomedicine; 2023 Feb; 110():154626. PubMed ID: 36603342
    [TBL] [Abstract][Full Text] [Related]  

  • 30. HYDAMTIQ, a selective PARP-1 inhibitor, improves bleomycin-induced lung fibrosis by dampening the TGF-β/SMAD signalling pathway.
    Lucarini L; Durante M; Lanzi C; Pini A; Boccalini G; Calosi L; Moroni F; Masini E; Mannaioni G
    J Cell Mol Med; 2017 Feb; 21(2):324-335. PubMed ID: 27704718
    [TBL] [Abstract][Full Text] [Related]  

  • 31. TGF-beta signaling in vascular fibrosis.
    Ruiz-Ortega M; Rodríguez-Vita J; Sanchez-Lopez E; Carvajal G; Egido J
    Cardiovasc Res; 2007 May; 74(2):196-206. PubMed ID: 17376414
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Classical and Non-classical Fibrosis Phenotypes Are Revealed by Lung and Cardiac Like Microvascular Tissues On-Chip.
    Akinbote A; Beltran-Sastre V; Cherubini M; Visone R; Hajal C; Cobanoglu D; Haase K
    Front Physiol; 2021; 12():735915. PubMed ID: 34690810
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dietary Sodium Restriction Reduces Arterial Stiffness, Vascular TGF-β-Dependent Fibrosis and Marinobufagenin in Young Normotensive Rats.
    Grigorova YN; Wei W; Petrashevskaya N; Zernetkina V; Juhasz O; Fenner R; Gilbert C; Lakatta EG; Shapiro JI; Bagrov AY; Fedorova OV
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30326586
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 15-LO/15-HETE mediated vascular adventitia fibrosis via p38 MAPK-dependent TGF-β.
    Zhang L; Li Y; Chen M; Su X; Yi D; Lu P; Zhu D
    J Cell Physiol; 2014 Feb; 229(2):245-57. PubMed ID: 23982954
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of Smad signaling cascades in cardiac fibrosis.
    Hanna A; Humeres C; Frangogiannis NG
    Cell Signal; 2021 Jan; 77():109826. PubMed ID: 33160018
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vascular Extracellular Matrix Remodeling and Hypertension.
    Cai Z; Gong Z; Li Z; Li L; Kong W
    Antioxid Redox Signal; 2021 Apr; 34(10):765-783. PubMed ID: 32460598
    [No Abstract]   [Full Text] [Related]  

  • 37. New insights into TGF-β/Smad signaling in tissue fibrosis.
    Hu HH; Chen DQ; Wang YN; Feng YL; Cao G; Vaziri ND; Zhao YY
    Chem Biol Interact; 2018 Aug; 292():76-83. PubMed ID: 30017632
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pro-fibrotic phenotype of human skin fibroblasts induced by periostin via modulating TGF-β signaling.
    Kanaoka M; Yamaguchi Y; Komitsu N; Feghali-Bostwick CA; Ogawa M; Arima K; Izuhara K; Aihara M
    J Dermatol Sci; 2018 May; 90(2):199-208. PubMed ID: 29433908
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Potential Role of Antihypertensive Medications in Preventing Excessive Arterial Stiffening.
    Jia G; Aroor AR; Martinez-Lemus LA; Sowers JR
    Curr Hypertens Rep; 2018 Jul; 20(9):76. PubMed ID: 29980951
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pathogenesis of non-alcoholic fatty liver disease mediated by YAP.
    Chen P; Luo Q; Huang C; Gao Q; Li L; Chen J; Chen B; Liu W; Zeng W; Chen Z
    Hepatol Int; 2018 Jan; 12(1):26-36. PubMed ID: 29330836
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.