BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 38179655)

  • 41. Advances in Drug Resistance of Esophageal Cancer: From the Perspective of Tumor Microenvironment.
    Luan S; Zeng X; Zhang C; Qiu J; Yang Y; Mao C; Xiao X; Zhou J; Zhang Y; Yuan Y
    Front Cell Dev Biol; 2021; 9():664816. PubMed ID: 33816512
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Chronic inflammation, cancer development and immunotherapy.
    Wen Y; Zhu Y; Zhang C; Yang X; Gao Y; Li M; Yang H; Liu T; Tang H
    Front Pharmacol; 2022; 13():1040163. PubMed ID: 36313280
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Remodeling tumor microenvironment with nanomedicines.
    Martin JD; Miyazaki T; Cabral H
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2021 Nov; 13(6):e1730. PubMed ID: 34124849
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The cytokines in tumor microenvironment: from cancer initiation-elongation-progression to metastatic outgrowth.
    Pradhan R; Kundu A; Kundu CN
    Crit Rev Oncol Hematol; 2024 Apr; 196():104311. PubMed ID: 38442808
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The role of matrix stiffness in cancer stromal cell fate and targeting therapeutic strategies.
    Wei J; Yao J; Yan M; Xie Y; Liu P; Mao Y; Li X
    Acta Biomater; 2022 Sep; 150():34-47. PubMed ID: 35948177
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Microenvironment of Lung Cancer and Therapeutic Implications.
    Mittal V; El Rayes T; Narula N; McGraw TE; Altorki NK; Barcellos-Hoff MH
    Adv Exp Med Biol; 2016; 890():75-110. PubMed ID: 26703800
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Architecture of Cancer-Associated Fibroblasts in Tumor Microenvironment: Mapping Their Origins, Heterogeneity, and Role in Cancer Therapy Resistance.
    Dzobo K; Dandara C
    OMICS; 2020 Jun; 24(6):314-339. PubMed ID: 32496970
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of stromal cell proportion-related genes in the breast cancer tumor microenvironment using CorDelSFS feature selection: implications for tumor progression and prognosis.
    Guo S; Ma Y; Li X; Li W; He X; Yuan Z; Hu Y
    Front Genet; 2023; 14():1165648. PubMed ID: 37576555
    [No Abstract]   [Full Text] [Related]  

  • 49. Therapeutic Targeting of the Tumor Microenvironment.
    Bejarano L; Jordāo MJC; Joyce JA
    Cancer Discov; 2021 Apr; 11(4):933-959. PubMed ID: 33811125
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives.
    Mao X; Xu J; Wang W; Liang C; Hua J; Liu J; Zhang B; Meng Q; Yu X; Shi S
    Mol Cancer; 2021 Oct; 20(1):131. PubMed ID: 34635121
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Unlocking the potential of the tumor microenvironment for cancer therapy.
    Tufail M
    Pathol Res Pract; 2023 Nov; 251():154846. PubMed ID: 37837860
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Metabolism of Immune Cells in the Tumor Microenvironment.
    Jung JG; Le A
    Adv Exp Med Biol; 2021; 1311():173-185. PubMed ID: 34014543
    [TBL] [Abstract][Full Text] [Related]  

  • 53. TME-Related Biomimetic Strategies Against Cancer.
    Peng C; Xu Y; Wu J; Wu D; Zhou L; Xia X
    Int J Nanomedicine; 2024; 19():109-135. PubMed ID: 38192633
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Thyroid Cancer and Fibroblasts.
    Avagliano A; Fiume G; Bellevicine C; Troncone G; Venuta A; Acampora V; De Lella S; Ruocco MR; Masone S; Velotti N; Carotenuto P; Mallardo M; Caiazza C; Montagnani S; Arcucci A
    Cancers (Basel); 2022 Aug; 14(17):. PubMed ID: 36077709
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Emerging role of autophagy in anti-tumor immunity: Implications for the modulation of immunotherapy resistance.
    Jiang T; Chen X; Ren X; Yang JM; Cheng Y
    Drug Resist Updat; 2021 May; 56():100752. PubMed ID: 33765484
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Future perspectives in melanoma research : Meeting report from the "Melanoma Bridge". Napoli, December 1st-4th 2015.
    Ascierto PA; Agarwala S; Botti G; Cesano A; Ciliberto G; Davies MA; Demaria S; Dummer R; Eggermont AM; Ferrone S; Fu YX; Gajewski TF; Garbe C; Huber V; Khleif S; Krauthammer M; Lo RS; Masucci G; Palmieri G; Postow M; Puzanov I; Silk A; Spranger S; Stroncek DF; Tarhini A; Taube JM; Testori A; Wang E; Wargo JA; Yee C; Zarour H; Zitvogel L; Fox BA; Mozzillo N; Marincola FM; Thurin M
    J Transl Med; 2016 Nov; 14(1):313. PubMed ID: 27846884
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Roles of the CXCL8-CXCR1/2 Axis in the Tumor Microenvironment and Immunotherapy.
    Han ZJ; Li YB; Yang LX; Cheng HJ; Liu X; Chen H
    Molecules; 2021 Dec; 27(1):. PubMed ID: 35011369
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Complexity of Tumor Microenvironment: Therapeutic Role of Curcumin and Its Metabolites.
    Prasad S; Saha P; Chatterjee B; Chaudhary AA; Lall R; Srivastava AK
    Nutr Cancer; 2023; 75(1):1-13. PubMed ID: 35818029
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Current Strategies for the Treatment of Hepatocellular Carcinoma by Modulating the Tumor Microenvironment via Nano-Delivery Systems: A Review.
    Huang Y; Wang T; Yang J; Wu X; Fan W; Chen J
    Int J Nanomedicine; 2022; 17():2335-2352. PubMed ID: 35619893
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The Tumor Microenvironment of Medulloblastoma: An Intricate Multicellular Network with Therapeutic Potential.
    van Bree NFHN; Wilhelm M
    Cancers (Basel); 2022 Oct; 14(20):. PubMed ID: 36291792
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.