These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 38179668)

  • 21. TD-Net: A Hybrid End-to-End Network for Automatic Liver Tumor Segmentation From CT Images.
    Di S; Zhao YQ; Liao M; Zhang F; Li X
    IEEE J Biomed Health Inform; 2023 Mar; 27(3):1163-1172. PubMed ID: 35696476
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SADSNet: A robust 3D synchronous segmentation network for liver and liver tumors based on spatial attention mechanism and deep supervision.
    Yang S; Liang Y; Wu S; Sun P; Chen Z
    J Xray Sci Technol; 2024; 32(3):707-723. PubMed ID: 38552134
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MSFR-Net: Multi-modality and single-modality feature recalibration network for brain tumor segmentation.
    Li X; Jiang Y; Li M; Zhang J; Yin S; Luo H
    Med Phys; 2023 Apr; 50(4):2249-2262. PubMed ID: 35962724
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hybrid-attention densely connected U-Net with GAP for extracting livers from CT volumes.
    Chen Y; Hu F; Wang Y; Zheng C
    Med Phys; 2022 Feb; 49(2):1015-1033. PubMed ID: 35015305
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new architecture combining convolutional and transformer-based networks for automatic 3D multi-organ segmentation on CT images.
    Li C; Bagher-Ebadian H; Sultan R; Elshaikh M; Movsas B; Zhu D; Chetty IJ
    Med Phys; 2023 Nov; 50(11):6990-7002. PubMed ID: 37738468
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ARPM-net: A novel CNN-based adversarial method with Markov random field enhancement for prostate and organs at risk segmentation in pelvic CT images.
    Zhang Z; Zhao T; Gay H; Zhang W; Sun B
    Med Phys; 2021 Jan; 48(1):227-237. PubMed ID: 33151620
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CAM-Wnet: An effective solution for accurate pulmonary embolism segmentation.
    Liu Z; Yuan H; Wang H
    Med Phys; 2022 Aug; 49(8):5294-5303. PubMed ID: 35609213
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automated left ventricular myocardium segmentation using 3D deeply supervised attention U-net for coronary computed tomography angiography; CT myocardium segmentation.
    Jun Guo B; He X; Lei Y; Harms J; Wang T; Curran WJ; Liu T; Jiang Zhang L; Yang X
    Med Phys; 2020 Apr; 47(4):1775-1785. PubMed ID: 32017118
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PS5-Net: a medical image segmentation network with multiscale resolution.
    Li F; Liu Y; Qi J; Du Y; Wang Q; Ma W; Xu X; Zhang Z
    J Med Imaging (Bellingham); 2024 Jan; 11(1):014008. PubMed ID: 38379775
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RA V-Net: deep learning network for automated liver segmentation.
    Lee Z; Qi S; Fan C; Xie Z; Meng J
    Phys Med Biol; 2022 Jun; 67(12):. PubMed ID: 35588720
    [No Abstract]   [Full Text] [Related]  

  • 31. The auto segmentation for cardiac structures using a dual-input deep learning network based on vision saliency and transformer.
    Wang J; Wang S; Liang W; Zhang N; Zhang Y
    J Appl Clin Med Phys; 2022 May; 23(5):e13597. PubMed ID: 35363415
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs.
    Tang F; Liang S; Zhong T; Huang X; Deng X; Zhang Y; Zhou L
    Eur Radiol; 2020 Feb; 30(2):823-832. PubMed ID: 31650265
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adaptive Attention Convolutional Neural Network for Liver Tumor Segmentation.
    Luan S; Xue X; Ding Y; Wei W; Zhu B
    Front Oncol; 2021; 11():680807. PubMed ID: 34434891
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ResTransUnet: An effective network combined with Transformer and U-Net for liver segmentation in CT scans.
    Ou J; Jiang L; Bai T; Zhan P; Liu R; Xiao H
    Comput Biol Med; 2024 Jul; 177():108625. PubMed ID: 38823365
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Liver tumor segmentation based on 3D convolutional neural network with dual scale.
    Meng L; Tian Y; Bu S
    J Appl Clin Med Phys; 2020 Jan; 21(1):144-157. PubMed ID: 31793212
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultrasound image segmentation based on Transformer and U-Net with joint loss.
    Cai L; Li Q; Zhang J; Zhang Z; Yang R; Zhang L
    PeerJ Comput Sci; 2023; 9():e1638. PubMed ID: 38077559
    [TBL] [Abstract][Full Text] [Related]  

  • 37. GCHA-Net: Global context and hybrid attention network for automatic liver segmentation.
    Liu H; Fu Y; Zhang S; Liu J; Wang Y; Wang G; Fang J
    Comput Biol Med; 2023 Jan; 152():106352. PubMed ID: 36481761
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DENSE-INception U-net for medical image segmentation.
    Zhang Z; Wu C; Coleman S; Kerr D
    Comput Methods Programs Biomed; 2020 Aug; 192():105395. PubMed ID: 32163817
    [TBL] [Abstract][Full Text] [Related]  

  • 39. STC-UNet: renal tumor segmentation based on enhanced feature extraction at different network levels.
    Hu W; Yang S; Guo W; Xiao N; Yang X; Ren X
    BMC Med Imaging; 2024 Jul; 24(1):179. PubMed ID: 39030510
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MANet: a multi-attention network for automatic liver tumor segmentation in computed tomography (CT) imaging.
    Hettihewa K; Kobchaisawat T; Tanpowpong N; Chalidabhongse TH
    Sci Rep; 2023 Nov; 13(1):20098. PubMed ID: 37973987
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.