BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 38179887)

  • 1. Deficiency of both classical and alternative end-joining pathways leads to a synergistic defect in double-strand break repair but not to an increase in homology-dependent gene targeting in Arabidopsis.
    Merker L; Feller L; Dorn A; Puchta H
    Plant J; 2024 Apr; 118(1):242-254. PubMed ID: 38179887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR/Cas9-Induced Double-Strand Break Repair in Arabidopsis Nonhomologous End-Joining Mutants.
    Shen H; Strunks GD; Klemann BJ; Hooykaas PJ; de Pater S
    G3 (Bethesda); 2017 Jan; 7(1):193-202. PubMed ID: 27866150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of chromatid-break-repair detects a homologous recombination to non-homologous end-joining switch with increasing load of DNA double-strand breaks.
    Murmann-Konda T; Soni A; Stuschke M; Iliakis G
    Mutat Res Genet Toxicol Environ Mutagen; 2021 Jul; 867():503372. PubMed ID: 34266628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstitution of Mycobacterium marinum Nonhomologous DNA End Joining Pathway in
    Zhang WW; Wright DG; Harrison L; Matlashewski G
    mSphere; 2022 Jun; 7(3):e0015622. PubMed ID: 35695492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome stability of Arabidopsis atm, ku80 and rad51b mutants: somatic and transgenerational responses to stress.
    Yao Y; Bilichak A; Titov V; Golubov A; Kovalchuk I
    Plant Cell Physiol; 2013 Jun; 54(6):982-9. PubMed ID: 23574700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chlamydomonas POLQ is necessary for CRISPR/Cas9-mediated gene targeting.
    Sizova I; Kelterborn S; Verbenko V; Kateriya S; Hegemann P
    G3 (Bethesda); 2021 Jul; 11(7):. PubMed ID: 33836052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of DNA double strand break repair and chromosome aberration formation.
    Iliakis G; Wang H; Perrault AR; Boecker W; Rosidi B; Windhofer F; Wu W; Guan J; Terzoudi G; Pantelias G
    Cytogenet Genome Res; 2004; 104(1-4):14-20. PubMed ID: 15162010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ku regulates the non-homologous end joining pathway choice of DNA double-strand break repair in human somatic cells.
    Fattah F; Lee EH; Weisensel N; Wang Y; Lichter N; Hendrickson EA
    PLoS Genet; 2010 Feb; 6(2):e1000855. PubMed ID: 20195511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increasing frequencies of site-specific mutagenesis and gene targeting in Arabidopsis by manipulating DNA repair pathways.
    Qi Y; Zhang Y; Zhang F; Baller JA; Cleland SC; Ryu Y; Starker CG; Voytas DF
    Genome Res; 2013 Mar; 23(3):547-54. PubMed ID: 23282329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Severe combined immunodeficient cells expressing mutant hRAD54 exhibit a marked DNA double-strand break repair and error-prone chromosome repair defect.
    Pluth JM; Fried LM; Kirchgessner CU
    Cancer Res; 2001 Mar; 61(6):2649-55. PubMed ID: 11289143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of DNA repair in the absence of classical non-homologous end joining.
    Kang YJ; Yan CT
    DNA Repair (Amst); 2018 Aug; 68():34-40. PubMed ID: 29929045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Xrcc1-dependent and Ku-dependent DNA double-strand break repair kinetics in Arabidopsis plants.
    Charbonnel C; Gallego ME; White CI
    Plant J; 2010 Oct; 64(2):280-90. PubMed ID: 21070408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homologous recombination protects mammalian cells from replication-associated DNA double-strand breaks arising in response to methyl methanesulfonate.
    Nikolova T; Ensminger M; Löbrich M; Kaina B
    DNA Repair (Amst); 2010 Oct; 9(10):1050-63. PubMed ID: 20708982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Advances in the Development of Non-PIKKs Targeting Small Molecule Inhibitors of DNA Double-Strand Break Repair.
    Kelm JM; Samarbakhsh A; Pillai A; VanderVere-Carozza PS; Aruri H; Pandey DS; Pawelczak KS; Turchi JJ; Gavande NS
    Front Oncol; 2022; 12():850883. PubMed ID: 35463312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. COM1, a factor of alternative non-homologous end joining, lagging behind the classic non-homologous end joining pathway in rice somatic cells.
    Xu Z; Zhang J; Cheng X; Tang Y; Gong Z; Gu M; Yu H
    Plant J; 2020 Jul; 103(1):140-153. PubMed ID: 32022972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arabidopsis DNA double-strand break repair pathways.
    West CE; Waterworth WM; Sunderland PA; Bray CM
    Biochem Soc Trans; 2004 Dec; 32(Pt 6):964-6. PubMed ID: 15506937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NHJ-1 Is Required for Canonical Nonhomologous End Joining in
    Vujin A; Jones SJ; Zetka M
    Genetics; 2020 Jul; 215(3):635-651. PubMed ID: 32457132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased Gene Targeting in Hyper-Recombinogenic LymphoBlastoid Cell Lines Leaves Unchanged DSB Processing by Homologous Recombination.
    Mladenov E; Paul-Konietzko K; Mladenova V; Stuschke M; Iliakis G
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA Double-Strand Break Repairs and Their Application in Plant DNA Integration.
    Shen H; Li Z
    Genes (Basel); 2022 Feb; 13(2):. PubMed ID: 35205367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Ku70 and Ku80 homologues in Arabidopsis thaliana: evidence for a role in the repair of DNA double-strand breaks.
    Tamura K; Adachi Y; Chiba K; Oguchi K; Takahashi H
    Plant J; 2002 Mar; 29(6):771-81. PubMed ID: 12148535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.