These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38179934)

  • 1. Regioselective Hydro(deutero)silylation of 1,3-Enynes Enabled by Photoredox/Nickel Dual Catalysis.
    Zhang G; Tan W; Zhang D; Wang K; Gao P; Wang S; Liu SL; Chen F
    Org Lett; 2024 Jan; 26(2):536-541. PubMed ID: 38179934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decarboxylative C-H silylation of N-heteroarenes with silanecarboxylic acids.
    Zhang G; Tian Y; Zhang C; Li X; Chen F
    Chem Commun (Camb); 2023 Feb; 59(17):2449-2452. PubMed ID: 36752089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual photoredox nickel-catalyzed silylation of aryl/heteroaryl bromides using hydrosilanes.
    Liu S; Robert F; Landais Y
    Chem Commun (Camb); 2023 Sep; 59(76):11369-11372. PubMed ID: 37665260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decarboxylative Allylation of Silanecarboxylic Acids Enabled by Organophotocatalysis.
    Zhang G; Wang K; Zhang D; Zhang C; Tan W; Chen Z; Chen F
    Org Lett; 2023 Oct; 25(40):7406-7411. PubMed ID: 37782755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regiodivergent sulfonylarylation of 1,3-enynes
    Chen Y; Zhu K; Huang Q; Lu Y
    Chem Sci; 2021 Oct; 12(40):13564-13571. PubMed ID: 34777776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rare-Earth-Catalyzed Selective 1,4-Hydrosilylation of Branched 1,3-Enynes Giving Tetrasubstituted Silylallenes.
    Chen W; Jiang C; Zhang J; Xu J; Xu L; Xu X; Li J; Cui C
    J Am Chem Soc; 2021 Aug; 143(33):12913-12918. PubMed ID: 34388341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly stereoselective synthesis of aryl/heteroaryl-C-nucleosides via the merger of photoredox and nickel catalysis.
    Ma Y; Liu S; Xi Y; Li H; Yang K; Cheng Z; Wang W; Zhang Y
    Chem Commun (Camb); 2019 Dec; 55(97):14657-14660. PubMed ID: 31746850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visible-Light-Driven Regioselective Decarboxylative Acylation of
    Prince ; Monika ; Kumar P; Singh BK
    ACS Omega; 2024 Jan; 9(1):651-657. PubMed ID: 38239288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic and Mechanistic Implications of Chlorine Photoelimination in Nickel/Photoredox C(sp
    Kariofillis SK; Doyle AG
    Acc Chem Res; 2021 Feb; 54(4):988-1000. PubMed ID: 33511841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Merging Photoredox and Nickel Catalysis: The Direct Synthesis of Ketones by the Decarboxylative Arylation of α-Oxo Acids.
    Chu L; Lipshultz JM; MacMillan DW
    Angew Chem Int Ed Engl; 2015 Jun; 54(27):7929-33. PubMed ID: 26014029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-DNA Decarboxylative Arylation: Merging Photoredox with Nickel Catalysis in Water.
    Kölmel DK; Meng J; Tsai MH; Que J; Loach RP; Knauber T; Wan J; Flanagan ME
    ACS Comb Sci; 2019 Aug; 21(8):588-597. PubMed ID: 31283168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regioselective Formal β-Allylation of Carbonyl Compounds Enabled by Cooperative Nickel and Photoredox Catalysis.
    Liu K; Wang Z; Künzel AN; Layh M; Studer A
    Angew Chem Int Ed Engl; 2023 Sep; 62(37):e202303473. PubMed ID: 37141023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decarboxylative 1,4-carbocyanation of 1,3-enynes to access tetra-substituted allenes
    Chen Y; Wang J; Lu Y
    Chem Sci; 2021 Sep; 12(34):11316-11321. PubMed ID: 34667542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acyl Radical Chemistry via Visible-Light Photoredox Catalysis.
    Banerjee A; Lei Z; Ngai MY
    Synthesis (Stuttg); 2019 Jan; 51(2):303-333. PubMed ID: 31057188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. When Light Meets Nitrogen-Centered Radicals: From Reagents to Catalysts.
    Yu XY; Zhao QQ; Chen J; Xiao WJ; Chen JR
    Acc Chem Res; 2020 May; 53(5):1066-1083. PubMed ID: 32286794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stereo- and Regioselective
    Hou H; Zhou B; Wang J; Zhao D; Sun D; Chen X; Han Y; Yan C; Shi Y; Zhu S
    Org Lett; 2021 Apr; 23(8):2981-2987. PubMed ID: 33784463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cobalt-Catalyzed Regio- and Stereoselective Hydrosilylation of 1,3-Diynes To Access Silyl-Functionalized 1,3-Enynes.
    Sang HL; Hu Y; Ge S
    Org Lett; 2019 Jul; 21(13):5234-5237. PubMed ID: 31247801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Room temperature C-P bond formation enabled by merging nickel catalysis and visible-light-induced photoredox catalysis.
    Xuan J; Zeng TT; Chen JR; Lu LQ; Xiao WJ
    Chemistry; 2015 Mar; 21(13):4962-5. PubMed ID: 25688851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic Utilization of α-Aminoalkyl Radicals and Related Species in Visible Light Photoredox Catalysis.
    Nakajima K; Miyake Y; Nishibayashi Y
    Acc Chem Res; 2016 Sep; 49(9):1946-56. PubMed ID: 27505299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nickel-catalyzed cascade hydrosilylation/cyclization of 1,7-enynes leading to silyl-containing quinolinones.
    Jin Z; Cai Y; Wang Z; Jin H; Liu Y; Zhou B
    Org Biomol Chem; 2022 Nov; 20(45):8838-8842. PubMed ID: 36321976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.