BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38180121)

  • 1. Transcription factors RhbZIP17 and RhWRKY30 enhance resistance to Botrytis cinerea by increasing lignin content in rose petals.
    Li D; Li X; Wang Z; Wang H; Gao J; Liu X; Zhang Z
    J Exp Bot; 2024 Feb; 75(5):1633-1646. PubMed ID: 38180121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative RNA-Seq analysis reveals a critical role for brassinosteroids in rose (Rosa hybrida) petal defense against Botrytis cinerea infection.
    Liu X; Cao X; Shi S; Zhao N; Li D; Fang P; Chen X; Qi W; Zhang Z
    BMC Genet; 2018 Aug; 19(1):62. PubMed ID: 30126371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A detached petal disc assay and virus-induced gene silencing facilitate the study of
    Cao X; Yan H; Liu X; Li D; Sui M; Wu J; Yu H; Zhang Z
    Hortic Res; 2019; 6():136. PubMed ID: 31814989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rose WRKY13 promotes disease protection to Botrytis by enhancing cytokinin content and reducing abscisic acid signaling.
    Liu X; Zhou X; Li D; Hong B; Gao J; Zhang Z
    Plant Physiol; 2023 Jan; 191(1):679-693. PubMed ID: 36271872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two transcription factors, RhERF005 and RhCCCH12, regulate rose resistance to Botrytis cinerea by modulating cytokinin levels.
    Liu X; Cao X; Chen M; Li D; Zhang Z
    J Exp Bot; 2024 Apr; 75(8):2584-2597. PubMed ID: 38314882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive analysis of bZIP gene family and function of RcbZIP17 on Botrytis resistance in rose (Rosa chinensis).
    Li D; Li X; Liu X; Zhang Z
    Gene; 2023 Jan; 849():146867. PubMed ID: 36115481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide characterization of the rose (Rosa chinensis) WRKY family and role of RcWRKY41 in gray mold resistance.
    Liu X; Li D; Zhang S; Xu Y; Zhang Z
    BMC Plant Biol; 2019 Nov; 19(1):522. PubMed ID: 31775626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RcMYB84 and RcMYB123 mediate jasmonate-induced defense responses against Botrytis cinerea in rose (Rosa chinensis).
    Ren H; Bai M; Sun J; Liu J; Ren M; Dong Y; Wang N; Ning G; Wang C
    Plant J; 2020 Aug; 103(5):1839-1849. PubMed ID: 32524706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of wall-associated kinase/wall-associated kinase-like (WAK/WAKL) family in rose (Rosa chinensis) reveals the role of RcWAK4 in Botrytis resistance.
    Liu X; Wang Z; Tian Y; Zhang S; Li D; Dong W; Zhang C; Zhang Z
    BMC Plant Biol; 2021 Nov; 21(1):526. PubMed ID: 34758750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of
    Ha STT; Kim YT; Jeon YH; Choi HW; In BC
    Plants (Basel); 2021 Jun; 10(6):. PubMed ID: 34207351
    [No Abstract]   [Full Text] [Related]  

  • 11. Global analysis of the AP2/ERF gene family in rose (Rosa chinensis) genome unveils the role of RcERF099 in Botrytis resistance.
    Li D; Liu X; Shu L; Zhang H; Zhang S; Song Y; Zhang Z
    BMC Plant Biol; 2020 Nov; 20(1):533. PubMed ID: 33228522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strawberry
    Jia S; Wang Y; Zhang G; Yan Z; Cai Q
    Genes (Basel); 2020 Dec; 12(1):. PubMed ID: 33396436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential Applications and Antifungal Activities of Engineered Nanomaterials against Gray Mold Disease Agent
    Hao Y; Cao X; Ma C; Zhang Z; Zhao N; Ali A; Hou T; Xiang Z; Zhuang J; Wu S; Xing B; Zhang Z; Rui Y
    Front Plant Sci; 2017; 8():1332. PubMed ID: 28824670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of
    Muñoz M; Faust JE; Schnabel G
    Plant Dis; 2019 Jul; 103(7):1577-1583. PubMed ID: 31082321
    [No Abstract]   [Full Text] [Related]  

  • 15. The Basic/Helix-Loop-Helix Transcription Factor Family Gene RcbHLH112 Is a Susceptibility Gene in Gray Mould Resistance of Rose (Rosa Chinensis).
    Ding C; Gao J; Zhang S; Jiang N; Su D; Huang X; Zhang Z
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early Detection of
    Ha STT; Kim YT; In BC
    Plants (Basel); 2023 Dec; 12(24):. PubMed ID: 38140414
    [No Abstract]   [Full Text] [Related]  

  • 17. RcTGA1 and glucosinolate biosynthesis pathway involvement in the defence of rose against the necrotrophic fungus Botrytis cinerea.
    Gao P; Zhang H; Yan H; Wang Q; Yan B; Jian H; Tang K; Qiu X
    BMC Plant Biol; 2021 May; 21(1):223. PubMed ID: 34001006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of WRKY transcription factors and characterization of two Botrytis cinerea-responsive LrWRKY genes from Lilium regale.
    Cui Q; Yan X; Gao X; Zhang DM; He HB; Jia GX
    Plant Physiol Biochem; 2018 Jun; 127():525-536. PubMed ID: 29723824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lignin metabolism involves Botrytis cinerea BcGs1- induced defense response in tomato.
    Yang C; Liang Y; Qiu D; Zeng H; Yuan J; Yang X
    BMC Plant Biol; 2018 Jun; 18(1):103. PubMed ID: 29866036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tomato WRKY transcriptional factor SlDRW1 is required for disease resistance against Botrytis cinerea and tolerance to oxidative stress.
    Liu B; Hong YB; Zhang YF; Li XH; Huang L; Zhang HJ; Li DY; Song FM
    Plant Sci; 2014 Oct; 227():145-56. PubMed ID: 25219316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.