These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38180151)

  • 1. Microstructure-based modeling to characterize low pore density open-cell foams and its experimental validation.
    Sachan S; Ramamoorthy S
    J Acoust Soc Am; 2024 Jan; 155(1):188-205. PubMed ID: 38180151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic properties of porous microlattices from effective medium to scattering dominated regimes.
    Krödel S; Palermo A; Daraio C
    J Acoust Soc Am; 2018 Jul; 144(1):319. PubMed ID: 30075686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of random microstructures and prediction of sound velocity and absorption for open foams with spherical pores.
    Zieliński TG
    J Acoust Soc Am; 2015 Apr; 137(4):1790-801. PubMed ID: 25920832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Hydrodynamic Conditions on the Type and Area of Occurrence of Gas-Liquid Flow Patterns in the Flow through Open-Cell Foams.
    Dyga R; Płaczek M
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32707895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manufacturing of Open-Cell Aluminium Foams: Comparing the Sponge Replication Technique and Its Combination with the Freezing Method.
    Sutygina A; Betke U; Scheffler M
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustic measurement and statistical characterization of direct-printed, variable-porosity aluminum foams.
    Konarski SG; Rohde CA; Gotoh R; Roberts SN; Naify CJ
    J Acoust Soc Am; 2021 Jun; 149(6):4327. PubMed ID: 34241492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of rigid open-cell foams using direct ultrasonic simulation.
    Sachan S; Ramamoorthy S
    J Acoust Soc Am; 2024 Jul; 156(1):534-547. PubMed ID: 39024387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation and uncertainty analysis of fluid-acoustic parameters of porous materials using microstructural properties.
    Lee HR; Yang SS; Lee JW; Kang YJ
    J Acoust Soc Am; 2020 Jul; 148(1):308. PubMed ID: 32752744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental investigation on pore size effect on the linear viscoelastic properties of acoustic foams.
    Deverge M; Benyahia L; Sahraoui S
    J Acoust Soc Am; 2009 Sep; 126(3):EL93-6. PubMed ID: 19739704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical Characteristics of Multi-Level 3D-Printed Silicone Foams.
    Yang Z; Wen J; Zhang G; Tang C; Deng Q; Ling J; Hu H
    Materials (Basel); 2024 Aug; 17(16):. PubMed ID: 39203275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of Microstructure Evolution and Mechanical Properties during Compression of Open-Cell Ni-Foams with Hollow Struts Using Micro-CT and FEM.
    Lee JH; Lee GY; Rha JJ; Kim JH; Cho JH
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-Dimensional Digital Reconstruction of Ti
    Stiapis CS; Skouras ED; Burganos VN
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31817780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthetic open cell foams versus a healthy human vertebra: Anisotropy, fluid flow and μ-CT structural studies.
    Gómez González S; Valera Jiménez JF; Cabestany Bastida G; Vlad MD; López López J; Fernández Aguado E
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110404. PubMed ID: 31923939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shape fidelity, mechanical and biological performance of 3D printed polycaprolactone-bioactive glass composite scaffolds.
    Baier RV; Contreras Raggio JI; Giovanetti CM; Palza H; Burda I; Terrasi G; Weisse B; De Freitas GS; Nyström G; Vivanco JF; Aiyangar AK
    Biomater Adv; 2022 Mar; 134():112540. PubMed ID: 35525740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A three-parameter analytical model for the acoustical properties of porous media.
    Horoshenkov KV; Hurrell A; Groby JP
    J Acoust Soc Am; 2019 Apr; 145(4):2512. PubMed ID: 31046383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capillary imbibition in open-cell monodisperse foams.
    Pitois O; Kaddami A; Langlois V
    J Colloid Interface Sci; 2020 Jul; 571():166-173. PubMed ID: 32199269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micrometric Monodisperse Solid Foams as Complete Photonic Bandgap Materials.
    Maimouni I; Morvaridi M; Russo M; Lui G; Morozov K; Cossy J; Florescu M; Labousse M; Tabeling P
    ACS Appl Mater Interfaces; 2020 Jul; 12(28):32061-32068. PubMed ID: 32530594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurements of ultrasonic phase velocities and attenuation of slow waves in cellular aluminum foams as cancellous bone-mimicking phantoms.
    Zhang C; Le LH; Zheng R; Ta D; Lou E
    J Acoust Soc Am; 2011 May; 129(5):3317-26. PubMed ID: 21568432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microlattice Metamaterials with Simultaneous Superior Acoustic and Mechanical Energy Absorption.
    Li X; Yu X; Chua JW; Lee HP; Ding J; Zhai W
    Small; 2021 Jun; 17(24):e2100336. PubMed ID: 33984173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An oxidation-nitridation-denitridation approach to transform metal solids into foams with adjustable pore sizes for energy applications.
    Qin H; Zhen C; Jia C; Yang Z; Ye H; Cheng HM; Liu G
    Sci Bull (Beijing); 2021 Aug; 66(15):1525-1532. PubMed ID: 36654281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.