These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 38180151)

  • 21. Superior Strength, Toughness, and Damage-Tolerance Observed in Microlattices of Aperiodic Unit Cells.
    Wang X; Li X; Li Z; Wang Z; Zhai W
    Small; 2024 Jun; 20(23):e2307369. PubMed ID: 38183382
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbon fiber/microlattice 3D hybrid architecture as multi-scale scaffold for tissue engineering.
    Islam M; Sadaf A; Gómez MR; Mager D; Korvink JG; Lantada AD
    Mater Sci Eng C Mater Biol Appl; 2021 Jul; 126():112140. PubMed ID: 34082951
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Additive manufacturing of biodegradable porous orthopaedic screw.
    Dhandapani R; Krishnan PD; Zennifer A; Kannan V; Manigandan A; Arul MR; Jaiswal D; Subramanian A; Kumbar SG; Sethuraman S
    Bioact Mater; 2020 Sep; 5(3):458-467. PubMed ID: 32280835
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Closed-cell crystalline foams: self-assembling, resonant metamaterials.
    Spadoni A; Höhler R; Cohen-Addad S; Dorodnitsyn V
    J Acoust Soc Am; 2014 Apr; 135(4):1692-9. PubMed ID: 25234969
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hierarchical porosity in additively manufactured bioengineering scaffolds: Fabrication & characterisation.
    Shalchy F; Lovell C; Bhaskar A
    J Mech Behav Biomed Mater; 2020 Oct; 110():103968. PubMed ID: 32745973
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Compressive modulus and deformation mechanisms of 3DG foams: experimental investigation and multiscale modeling.
    Mahdavi SM; Adibnazari S; Del Monte F; Gutiérrez MC
    Nanotechnology; 2021 Sep; 32(48):. PubMed ID: 34343983
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Texture modulation of starch-based closed-cell foams using 3D printing: Deformation behavior beyond the elastic regime.
    Fahmy AR; Jekle M; Becker T
    J Texture Stud; 2023 Feb; 54(1):153-169. PubMed ID: 36222431
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Permeability and mechanical properties of gradient porous PDMS scaffolds fabricated by 3D-printed sacrificial templates designed with minimal surfaces.
    Montazerian H; Mohamed MGA; Montazeri MM; Kheiri S; Milani AS; Kim K; Hoorfar M
    Acta Biomater; 2019 Sep; 96():149-160. PubMed ID: 31252172
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acoustic and mechanical characterization of 3D-printed scaffolds for tissue engineering applications.
    Aliabouzar M; Zhang GL; Sarkar K
    Biomed Mater; 2018 Aug; 13(5):055013. PubMed ID: 30018182
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Architected Polymer Foams via Direct Bubble Writing.
    Visser CW; Amato DN; Mueller J; Lewis JA
    Adv Mater; 2019 Nov; 31(46):e1904668. PubMed ID: 31535777
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multi-directional cellular alignment in 3D guided by electrohydrodynamically-printed microlattices.
    Mao M; He J; Li Z; Han K; Li D
    Acta Biomater; 2020 Jan; 101():141-151. PubMed ID: 31669696
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative stereological analysis of the highly porous hydroxyapatite scaffolds using X-ray CM and SEM.
    Zygmuntowicz J; Zima A; Czechowska J; Szlazak K; Ślosarczyk A; Konopka K
    Biomed Mater Eng; 2017; 28(3):235-246. PubMed ID: 28527187
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of Pore Size Variation on Thermal Conductivity of Open-Porous Foams.
    Skibinski J; Cwieka K; Haj Ibrahim S; Wejrzanowski T
    Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31238492
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of 3D printed porous architecture on mesenchymal stem cell enrichment and differentiation.
    Ferlin KM; Prendergast ME; Miller ML; Kaplan DS; Fisher JP
    Acta Biomater; 2016 Mar; 32():161-169. PubMed ID: 26773464
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultralight metallic microlattices.
    Schaedler TA; Jacobsen AJ; Torrents A; Sorensen AE; Lian J; Greer JR; Valdevit L; Carter WB
    Science; 2011 Nov; 334(6058):962-5. PubMed ID: 22096194
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A 3D-Printed, Freestanding Carbon Lattice for Sodium Ion Batteries.
    Katsuyama Y; Kudo A; Kobayashi H; Han J; Chen M; Honma I; Kaner RB
    Small; 2022 Jul; 18(29):e2202277. PubMed ID: 35726082
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Review and a Theoretical Approach on Pressure Drop Correlations of Flow through Open-Cell Metal Foam.
    Yang H; Li Y; Ma B; Zhu Y
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34201253
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sound absorption of cellular metals with semiopen cells.
    Lu TJ; Chen F; He D
    J Acoust Soc Am; 2000 Oct; 108(4):1697-709. PubMed ID: 11051497
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of the three-dimensional microstructure on the sound absorption of foams: A parametric study.
    Chevillotte F; Perrot C
    J Acoust Soc Am; 2017 Aug; 142(2):1130. PubMed ID: 28863575
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calcium Phosphate Foams: Potential Scaffolds for Bone Tissue Modeling in Three Dimensions.
    Montufar EB; Vojtova L; Celko L; Ginebra MP
    Methods Mol Biol; 2017; 1612():79-94. PubMed ID: 28634936
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.