These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 38180153)
1. Deep learning based prediction of urban air mobility noise propagation in urban environment. Kim Y; Lee S J Acoust Soc Am; 2024 Jan; 155(1):171-187. PubMed ID: 38180153 [TBL] [Abstract][Full Text] [Related]
2. Urban Air Mobility Noise: Further Considerations on Indoor Space. Kim J Int J Environ Res Public Health; 2022 Sep; 19(18):. PubMed ID: 36141570 [TBL] [Abstract][Full Text] [Related]
3. Long-term application potential of urban air mobility complementing public transport: an upper Bavaria example. Ploetner KO; Al Haddad C; Antoniou C; Frank F; Fu M; Kabel S; Llorca C; Moeckel R; Moreno AT; Pukhova A; Rothfeld R; Shamiyeh M; Straubinger A; Wagner H; Zhang Q CEAS Aeronaut J; 2020; 11(4):991-1007. PubMed ID: 33403052 [TBL] [Abstract][Full Text] [Related]
4. The role of intelligent technology in the development of urban air mobility systems: A technical perspective. Liu Y; Lyu C; Bai F; Parishwad O; Li Y Fundam Res; 2024 Sep; 4(5):1017-1024. PubMed ID: 39431131 [TBL] [Abstract][Full Text] [Related]
5. Efficient prediction of airborne noise propagation in a non-turbulent urban environment using Gaussian beam tracing method. Yunus F; Casalino D; Avallone F; Ragni D J Acoust Soc Am; 2023 Apr; 153(4):2362. PubMed ID: 37092941 [TBL] [Abstract][Full Text] [Related]
6. Business model options for passenger urban air mobility. Straubinger A; Michelmann J; Biehle T CEAS Aeronaut J; 2021; 12(2):361-380. PubMed ID: 33868510 [TBL] [Abstract][Full Text] [Related]
7. Machine Learning-Based Air-to-Ground Channel Model Selection Method for UAV Communications Using Digital Surface Model Data. Kang YE; Jung YH Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501936 [TBL] [Abstract][Full Text] [Related]
8. Urban Advanced Mobility Dependability: A Model-Based Quantification on Vehicular Ad Hoc Networks with Virtual Machine Migration. Silva LG; Cardoso I; Brito C; Barbosa V; Nogueira B; Choi E; Nguyen TA; Min D; Lee JW; Silva FA Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067858 [TBL] [Abstract][Full Text] [Related]
9. Vehicular traffic noise prediction and propagation modelling using neural networks and geospatial information system. Ahmed AA; Pradhan B Environ Monit Assess; 2019 Feb; 191(3):190. PubMed ID: 30809746 [TBL] [Abstract][Full Text] [Related]
10. GNSS Performance Modelling and Augmentation for Urban Air Mobility. Bijjahalli S; Sabatini R; Gardi A Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31569812 [TBL] [Abstract][Full Text] [Related]
11. Integration of Data and Predictive Models for the Evaluation of Air Quality and Noise in Urban Environments. Govea J; Gaibor-Naranjo W; Sanchez-Viteri S; Villegas-Ch W Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257404 [TBL] [Abstract][Full Text] [Related]
12. Deep learning-based Accelerated and Noise-Suppressed Estimation (DANSE) of quantitative Gradient-Recalled Echo (qGRE) magnetic resonance imaging metrics associated with human brain neuronal structure and hemodynamic properties. Kahali S; Kothapalli SVVN; Xu X; Kamilov US; Yablonskiy DA NMR Biomed; 2023 May; 36(5):e4883. PubMed ID: 36442839 [TBL] [Abstract][Full Text] [Related]
13. Efficient computation of broadband noise propagation using Gaussian beam tracing method. Bian H; Tan Q; Zhong S; Zhang X J Acoust Soc Am; 2022 May; 151(5):3387. PubMed ID: 35649941 [TBL] [Abstract][Full Text] [Related]
14. Atmospheric visibility prediction by using the DBN deep learning model and principal component analysis. Wang Y; Du J; Yan Z; Song Y; Hua D Appl Opt; 2022 Apr; 61(10):2657-2666. PubMed ID: 35471348 [TBL] [Abstract][Full Text] [Related]
15. Ground Control System for UAS Safe Landing Area Determination (SLAD) in Urban Air Mobility Operations. Ariante G; Ponte S; Papa U; Greco A; Del Core G Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590916 [TBL] [Abstract][Full Text] [Related]
16. Human Factors Evaluation of the Universal Anaesthesia Machine: Assessing Equipment with High-Fidelity Simulation Prior to Deployment in a Resource-Constrained Environment. Sampson JB; Lee BH; Koka R; Chima AM; Jackson EV; Ogbuagu OO; Tran TP; Rosen MA J Natl Med Assoc; 2019 Oct; 111(5):490-499. PubMed ID: 31078287 [TBL] [Abstract][Full Text] [Related]
17. Fast Speckle Noise Suppression Algorithm in Breast Ultrasound Image Using Three-Dimensional Deep Learning. Li X; Wang Y; Zhao Y; Wei Y Front Physiol; 2022; 13():880966. PubMed ID: 35492597 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of Deep Learning-Based Approaches to Segment Bowel Air Pockets and Generate Pelvic Attenuation Maps from CAIPIRINHA-Accelerated Dixon MR Images. Sari H; Reaungamornrat J; Catalano OA; Vera-Olmos J; Izquierdo-Garcia D; Morales MA; Torrado-Carvajal A; Ng TSC; Malpica N; Kamen A; Catana C J Nucl Med; 2022 Mar; 63(3):468-475. PubMed ID: 34301782 [TBL] [Abstract][Full Text] [Related]
19. Integrating random forests and propagation models for high-resolution noise mapping. Liu Y; Oiamo T; Rainham D; Chen H; Hatzopoulou M; Brook JR; Davies H; Goudreau S; Smargiassi A Environ Res; 2021 Apr; 195():110905. PubMed ID: 33631139 [TBL] [Abstract][Full Text] [Related]
20. Prediction-based psychoacoustic analysis of multirotor noise under gusty wind conditions. Ko J; Kim Y; Jeong J; Lee S J Acoust Soc Am; 2023 Nov; 154(5):3004-3018. PubMed ID: 37955567 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]