These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 38180153)

  • 21. 90Y SPECT scatter estimation and voxel dosimetry in radioembolization using a unified deep learning framework.
    Jia Y; Li Z; Akhavanallaf A; Fessler JA; Dewaraja YK
    EJNMMI Phys; 2023 Dec; 10(1):82. PubMed ID: 38091168
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthetic CT reconstruction using a deep spatial pyramid convolutional framework for MR-only breast radiotherapy.
    Olberg S; Zhang H; Kennedy WR; Chun J; Rodriguez V; Zoberi I; Thomas MA; Kim JS; Mutic S; Green OL; Park JC
    Med Phys; 2019 Sep; 46(9):4135-4147. PubMed ID: 31309586
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Denoising of three-dimensional fast spin echo magnetic resonance images of knee joints using spatial-variant noise-relevant residual learning of convolution neural network.
    Zhao S; Cahill DG; Li S; Xiao F; Blu T; Griffith JF; Chen W
    Comput Biol Med; 2022 Dec; 151(Pt A):106295. PubMed ID: 36423533
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Projection-domain scatter correction for cone beam computed tomography using a residual convolutional neural network.
    Nomura Y; Xu Q; Shirato H; Shimizu S; Xing L
    Med Phys; 2019 Jul; 46(7):3142-3155. PubMed ID: 31077390
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A modified 3D algorithm for road traffic noise attenuation calculations in large urban areas.
    Wang H; Cai M; Yao Y
    J Environ Manage; 2017 Jul; 196():614-626. PubMed ID: 28360011
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automatic head computed tomography image noise quantification with deep learning.
    Inkinen SI; Mäkelä T; Kaasalainen T; Peltonen J; Kangasniemi M; Kortesniemi M
    Phys Med; 2022 Jul; 99():102-112. PubMed ID: 35671678
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recommendations for emerging air taxi network operations based on online review analysis of helicopter services.
    Rajendran S; Pagel E
    Heliyon; 2020 Dec; 6(12):e05581. PubMed ID: 33305048
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aggregate Impact of Anomalous Noise Events on the WASN-Based Computation of Road Traffic Noise Levels in Urban and Suburban Environments.
    Alías F; Orga F; Alsina-Pagès RM; Socoró JC
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31979126
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A convolutional neural network algorithm for automatic segmentation of head and neck organs at risk using deep lifelong learning.
    Chan JW; Kearney V; Haaf S; Wu S; Bogdanov M; Reddick M; Dixit N; Sudhyadhom A; Chen J; Yom SS; Solberg TD
    Med Phys; 2019 May; 46(5):2204-2213. PubMed ID: 30887523
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of the COVID-19 Lockdown Measures on Noise Levels in Urban Areas-A Pre/during Comparison of Long-Term Sound Pressure Measurements in the Ruhr Area, Germany.
    Hornberg J; Haselhoff T; Lawrence BT; Fischer JL; Ahmed S; Gruehn D; Moebus S
    Int J Environ Res Public Health; 2021 Apr; 18(9):. PubMed ID: 33925635
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-resolution 3D MR Fingerprinting using parallel imaging and deep learning.
    Chen Y; Fang Z; Hung SC; Chang WT; Shen D; Lin W
    Neuroimage; 2020 Feb; 206():116329. PubMed ID: 31689536
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CT-based transformer model for non-invasively predicting the Fuhrman nuclear grade of clear cell renal cell carcinoma.
    Yang M; He X; Xu L; Liu M; Deng J; Cheng X; Wei Y; Li Q; Wan S; Zhang F; Wu L; Wang X; Song B; Liu M
    Front Oncol; 2022; 12():961779. PubMed ID: 36249050
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A hybrid deep leaning model for prediction and parametric sensitivity analysis of noise annoyance.
    Tiwari SK; Kumaraswamidhas LA; Prince ; Kamal M; Rehman MU
    Environ Sci Pollut Res Int; 2023 Apr; 30(17):49666-49684. PubMed ID: 36781668
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of the Urban Airshed Model to forecasting next-day peak ozone concentrations in Atlanta, Georgia.
    Chang ME; Cardelino C
    J Air Waste Manag Assoc; 2000 Nov; 50(11):2010-24. PubMed ID: 11111345
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Probabilistic self-learning framework for low-dose CT denoising.
    Bai T; Wang B; Nguyen D; Jiang S
    Med Phys; 2021 May; 48(5):2258-2270. PubMed ID: 33621348
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient steganalysis using convolutional auto encoder network to ensure original image quality.
    Ayaluri MR; K SR; Konda SR; Chidirala SR
    PeerJ Comput Sci; 2021; 7():e356. PubMed ID: 33817006
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improving the Accuracy of Simultaneously Reconstructed Activity and Attenuation Maps Using Deep Learning.
    Hwang D; Kim KY; Kang SK; Seo S; Paeng JC; Lee DS; Lee JS
    J Nucl Med; 2018 Oct; 59(10):1624-1629. PubMed ID: 29449446
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A general procedure to generate models for urban environmental-noise pollution using feature selection and machine learning methods.
    Torija AJ; Ruiz DP
    Sci Total Environ; 2015 Feb; 505():680-93. PubMed ID: 25461071
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Machine Learning Models for the Hearing Impairment Prediction in Workers Exposed to Complex Industrial Noise: A Pilot Study.
    Zhao Y; Li J; Zhang M; Lu Y; Xie H; Tian Y; Qiu W
    Ear Hear; 2019; 40(3):690-699. PubMed ID: 30142102
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An integrated 3D CNN-GRU deep learning method for short-term prediction of PM2.5 concentration in urban environment.
    Faraji M; Nadi S; Ghaffarpasand O; Homayoni S; Downey K
    Sci Total Environ; 2022 Aug; 834():155324. PubMed ID: 35452742
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.