These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38180314)

  • 1. Edge-by-Edge Lateral Heterostructure through Interfacial Sliding.
    Li Z; Zhang L; Liu S; Yang X; Gao W; Chen Y; Leng Y; Lu Z; Ma L; Lu D; Liu X; Duan X; Wang Y; Liao L; Liu Y
    Nano Lett; 2024 Jan; 24(2):770-776. PubMed ID: 38180314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacial contact barrier and charge carrier transport of MoS
    Zhang ZW; Liu ZS; Zhang JJ; Sun BN; Zou DF; Nie GZ; Chen M; Zhao YQ; Jiang S
    Phys Chem Chem Phys; 2023 Mar; 25(13):9548-9558. PubMed ID: 36939192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-pot liquid-phase synthesis of MoS
    Bose S; Mukherjee S; Jana S; Srivastava SK; Ray SK
    Nanotechnology; 2023 Jan; 34(12):. PubMed ID: 36595332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strain Releasing of Flexible 2D Electronics through van der Waals Sliding Contact.
    Li Z; Chen Y; Liu S; Li W; Liu L; Song W; Lu D; Ma L; Yang X; Xie Z; Duan X; Yang Z; Wang Y; Liao L; Liu Y
    ACS Nano; 2022 Aug; 16(8):13152-13159. PubMed ID: 35969178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strain controllable band alignment and the interfacial and optical properties of tellurene/GaAs van der Waals heterostructures.
    Li G; Bao H; Peng Y; Fu X; Liao W; Xiang C
    Phys Chem Chem Phys; 2024 Jun; 26(22):16327-16336. PubMed ID: 38805024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial Coupling and Modulation of van der Waals Heterostructures for Nanodevices.
    Zhao K; He D; Fu S; Bai Z; Miao Q; Huang M; Wang Y; Zhang X
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Configuration-dependent anti-ambipolar van der Waals p-n heterostructures based on pentacene single crystal and MoS
    Dong J; Liu F; Wang F; Wang J; Li M; Wen Y; Wang L; Wang G; He J; Jiang C
    Nanoscale; 2017 Jun; 9(22):7519-7525. PubMed ID: 28534906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interfacial Interactions in van der Waals Heterostructures of MoS
    Li H; Wu JB; Ran F; Lin ML; Liu XL; Zhao Y; Lu X; Xiong Q; Zhang J; Huang W; Zhang H; Tan PH
    ACS Nano; 2017 Nov; 11(11):11714-11723. PubMed ID: 29068659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vertically Stacked and Self-Encapsulated van der Waals Heterojunction Diodes Using Two-Dimensional Layered Semiconductors.
    Miao J; Xu Z; Li Q; Bowman A; Zhang S; Hu W; Zhou Z; Wang C
    ACS Nano; 2017 Oct; 11(10):10472-10479. PubMed ID: 28926227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A strategy for boosting photovoltaic performance based on a two-dimensional ZrSSe/HfSSe van der Waals heterostructure.
    Han K; Guo D; Han Y; Zhao P; Liang Y; Wang Q
    Phys Chem Chem Phys; 2024 Mar; 26(10):8539-8546. PubMed ID: 38412426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable Schottky barrier in Janus-
    Guo H; Lang X; Tian X; Jiang W; Wang G
    Nanotechnology; 2022 Jul; 33(42):. PubMed ID: 35817003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificially created interfacial states enabled van der Waals heterostructure memory device.
    Xiang D; Cao Y; Wang K; Han Z; Liu T; Chen W
    Nanotechnology; 2022 Feb; 33(17):. PubMed ID: 35026752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mobility Engineering in Vertical Field Effect Transistors Based on Van der Waals Heterostructures.
    Shin YS; Lee K; Kim YR; Lee H; Lee IM; Kang WT; Lee BH; Kim K; Heo J; Park S; Lee YH; Yu WJ
    Adv Mater; 2018 Mar; 30(9):. PubMed ID: 29333683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strain forces tuned the electronic and optical properties in GaTe/MoS
    Li Y; Liu J; Zhao X; Yuan X; Hu G; Yuan X; Ren J
    RSC Adv; 2020 Jun; 10(42):25136-25142. PubMed ID: 35517469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Realization of Large Scale, 2D van der Waals Heterojunction of SnS
    Li S; Wang Y; Cheng P; Feng B; Chen L; Wu K
    Small; 2021 Sep; 17(37):e2101154. PubMed ID: 34331375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Effect of the Pre-Strain Process on the Strain Engineering of Two-Dimensional Materials and Their van der Waals Heterostructures.
    Han J; Yue X; Shan Y; Chen J; Ekoya BGM; Hu L; Liu R; Qiu Z; Cong C
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Negative Differential Photoconductance as a Signature of Nonradiative Energy Transfer in van der Waals Heterojunction.
    Dandu M; Gupta G; Majumdar K
    ACS Nano; 2021 Oct; 15(10):16432-16441. PubMed ID: 34644047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of Interfacial Bubble Controls Adhesion Mechanics in Van der Waals Heterostructure.
    Sangani LDV; Mandal S; Ghosh S; Watanabe K; Taniguchi T; Deshmukh MM
    Nano Lett; 2022 May; 22(9):3612-3619. PubMed ID: 35389226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Band-Gap Landscape Engineering in Large-Scale 2D Semiconductor van der Waals Heterostructures.
    Zatko V; Dubois SM; Godel F; Carrétéro C; Sander A; Collin S; Galbiati M; Peiro J; Panciera F; Patriarche G; Brus P; Servet B; Charlier JC; Martin MB; Dlubak B; Seneor P
    ACS Nano; 2021 Apr; 15(4):7279-7289. PubMed ID: 33755422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Two-Dimensional Polyimide-Graphene Heterostructure with Ultra-fast Interlayer Charge Transfer.
    Liu K; Li J; Qi H; Hambsch M; Rawle J; Vázquez AR; Nia AS; Pashkin A; Schneider H; Polozij M; Heine T; Helm M; Mannsfeld SCB; Kaiser U; Dong R; Feng X
    Angew Chem Int Ed Engl; 2021 Jun; 60(25):13859-13864. PubMed ID: 33835643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.