These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. GDP-to-GTP exchange on the microtubule end can contribute to the frequency of catastrophe. Piedra FA; Kim T; Garza ES; Geyer EA; Burns A; Ye X; Rice LM Mol Biol Cell; 2016 Nov; 27(22):3515-3525. PubMed ID: 27146111 [TBL] [Abstract][Full Text] [Related]
4. Induction of microtubule catastrophe by formation of tubulin-GDP and apotubulin subunits at microtubule ends. Caplow M; Shanks J Biochemistry; 1995 Dec; 34(48):15732-41. PubMed ID: 7495804 [TBL] [Abstract][Full Text] [Related]
5. How tubulin subunits are lost from the shortening ends of microtubules. Tran PT; Joshi P; Salmon ED J Struct Biol; 1997 Mar; 118(2):107-18. PubMed ID: 9126637 [TBL] [Abstract][Full Text] [Related]
7. A metastable intermediate state of microtubule dynamic instability that differs significantly between plus and minus ends. Tran PT; Walker RA; Salmon ED J Cell Biol; 1997 Jul; 138(1):105-17. PubMed ID: 9214385 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of microtubule elongation by GDP. Bayley PM; Martin SR Biochem Biophys Res Commun; 1986 May; 137(1):351-8. PubMed ID: 3718509 [TBL] [Abstract][Full Text] [Related]
9. Microtubule elongation and guanosine 5'-triphosphate hydrolysis. Role of guanine nucleotides in microtubule dynamics. Carlier MF; Didry D; Pantaloni D Biochemistry; 1987 Jul; 26(14):4428-37. PubMed ID: 3663597 [TBL] [Abstract][Full Text] [Related]
10. Visualization of the GDP-dependent switching in the growth polarity of microtubules. Tanaka-Takiguchi Y; Itoh TJ; Hotani H J Mol Biol; 1998 Jul; 280(3):365-73. PubMed ID: 9665843 [TBL] [Abstract][Full Text] [Related]
13. Concerning the chemical nature of tubulin subunits that cap and stabilize microtubules. Caplow M; Fee L Biochemistry; 2003 Feb; 42(7):2122-6. PubMed ID: 12590601 [TBL] [Abstract][Full Text] [Related]
14. Mechanism of GTP hydrolysis in tubulin polymerization: characterization of the kinetic intermediate microtubule-GDP-Pi using phosphate analogues. Carlier MF; Didry D; Simon C; Pantaloni D Biochemistry; 1989 Feb; 28(4):1783-91. PubMed ID: 2719934 [TBL] [Abstract][Full Text] [Related]
15. Directed elongation model for microtubule GTP hydrolysis. Caplow M; Reid R Proc Natl Acad Sci U S A; 1985 May; 82(10):3267-71. PubMed ID: 3858823 [TBL] [Abstract][Full Text] [Related]
16. Role of GTP hydrolysis in microtubule polymerization: evidence for a coupled hydrolysis mechanism. Stewart RJ; Farrell KW; Wilson L Biochemistry; 1990 Jul; 29(27):6489-98. PubMed ID: 2207090 [TBL] [Abstract][Full Text] [Related]
17. Measurements and simulations of microtubule growth imply strong longitudinal interactions and reveal a role for GDP on the elongating end. Cleary JM; Kim T; Cook ASI; McCormick LA; Hancock WO; Rice LM Elife; 2022 Apr; 11():. PubMed ID: 35420545 [TBL] [Abstract][Full Text] [Related]
18. Reexamination of the role of nonhydrolyzable guanosine 5'-triphosphate analogues in tubulin polymerization: reaction conditions are a critical factor for effective interactions at the exchangeable nucleotide site. Hamel E; Lin CM Biochemistry; 1990 Mar; 29(11):2720-9. PubMed ID: 2346744 [TBL] [Abstract][Full Text] [Related]
19. Tubulin-nucleotide interactions during the polymerization and depolymerization of microtubules. Weisenberg RC; Deery WJ; Dickinson PJ Biochemistry; 1976 Sep; 15(19):4248-54. PubMed ID: 963034 [TBL] [Abstract][Full Text] [Related]
20. Kinetochores distinguish GTP from GDP forms of the microtubule lattice. Severin FF; Sorger PK; Hyman AA Nature; 1997 Aug; 388(6645):888-91. PubMed ID: 9278051 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]