These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38180824)

  • 1. Facile and Widely Applicable Route to Self-Adaptive Emissivity Modulation: Energy-Saving Demonstration with Transparent Wood.
    Hu X; Cai W; Zhang Y; Shi S; Ming Y; Yu R; Chen D; Yang M; Wang F; Yang H; Kan CW; Noor N; Fei B
    Nano Lett; 2024 Jan; 24(2):657-666. PubMed ID: 38180824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A solar/radiative cooling dual-regulation smart window based on shape-morphing kirigami structures.
    Wang S; Dong Y; Li Y; Ryu K; Dong Z; Chen J; Dai Z; Ke Y; Yin J; Long Y
    Mater Horiz; 2023 Oct; 10(10):4243-4250. PubMed ID: 37555343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colorful low-emissivity paints for space heating and cooling energy savings.
    Peng Y; Lai JC; Xiao X; Jin W; Zhou J; Yang Y; Gao X; Tang J; Fan L; Fan S; Bao Z; Cui Y
    Proc Natl Acad Sci U S A; 2023 Aug; 120(34):e2300856120. PubMed ID: 37579165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Pattern over a Thick Silica Film to Realize Passive Radiative Cooling.
    Liu Y; Li J; Liu C
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34070026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Janus Interface Engineering Boosting Visibly Transparent Radiative Cooling for Energy Saving.
    Li Y; Chen X; Yu L; Pang D; Yan H; Chen M
    ACS Appl Mater Interfaces; 2023 Jan; 15(3):4122-4131. PubMed ID: 36642885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scalable thermochromic smart windows with passive radiative cooling regulation.
    Wang S; Jiang T; Meng Y; Yang R; Tan G; Long Y
    Science; 2021 Dec; 374(6574):1501-1504. PubMed ID: 34914526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ordered-Porous-Array Polymethyl Methacrylate Films for Radiative Cooling.
    Qi G; Tan X; Tu Y; Yang X; Qiao Y; Wang Y; Geng J; Yao S; Chen X
    ACS Appl Mater Interfaces; 2022 Jul; 14(27):31277-31284. PubMed ID: 35771521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scalable, Patternable Glass-Infiltrated Ceramic Radiative Coolers for Energy-Saving Architectural Applications.
    Jeon SK; Kim JT; Kim MS; Kim IS; Park SJ; Jeong H; Lee GJ; Kim YJ
    Adv Sci (Weinh); 2023 Sep; 10(27):e2302701. PubMed ID: 37485641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabry-Perot-resonator-coupled metal pattern metamaterial for infrared suppression and radiative cooling.
    Liu D; Xu Y; Xuan Y
    Appl Opt; 2020 Aug; 59(23):6861-6867. PubMed ID: 32788776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transparent and Mechanically Resistant Silver-Nanowire-Based Low-Emissivity Coatings.
    Hanauer S; Celle C; Crivello C; Szambolics H; Muñoz-Rojas D; Bellet D; Simonato JP
    ACS Appl Mater Interfaces; 2021 May; 13(18):21971-21978. PubMed ID: 33940794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstructured surfaces for colored and non-colored sky radiative cooling.
    Blandre E; Yalçin RA; Joulain K; Drévillon J
    Opt Express; 2020 Sep; 28(20):29703-29713. PubMed ID: 33114863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellulose-Based Radiative Cooling and Solar Heating Powers Ionic Thermoelectrics.
    Liao M; Banerjee D; Hallberg T; Åkerlind C; Alam MM; Zhang Q; Kariis H; Zhao D; Jonsson MP
    Adv Sci (Weinh); 2023 Mar; 10(8):e2206510. PubMed ID: 36646654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iridescent Daytime Radiative Cooling with No Absorption Peaks in the Visible Range.
    Ding Z; Pattelli L; Xu H; Sun W; Li X; Pan L; Zhao J; Wang C; Zhang X; Song Y; Qiu J; Li Y; Yang R
    Small; 2022 Jun; 18(25):e2202400. PubMed ID: 35587771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Performance Daytime Radiative Cooler and Near-Ideal Selective Emitter Enabled by Transparent Sapphire Substrate.
    Chae D; Son S; Liu Y; Lim H; Lee H
    Adv Sci (Weinh); 2020 Oct; 7(19):2001577. PubMed ID: 33042765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scalable and High-Performance Radiative Cooling Fabrics through an Electrospinning Method.
    Zhang Y; Yu J
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45707-45715. PubMed ID: 36169387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous Photothermal and Radiative Cooling Energy Harvesting by VO
    Liu M; Li X; Li L; Li L; Zhao S; Lu K; Chen K; Zhu J; Zhou T; Hu C; Lin Z; Xu C; Zhao B; Zhang G; Pei G; Zou C
    ACS Nano; 2023 May; 17(10):9501-9509. PubMed ID: 37166276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scalable Bacterial Cellulose-Based Radiative Cooling Materials with Switchable Transparency for Thermal Management and Enhanced Solar Energy Harvesting.
    Shi S; Lv P; Valenzuela C; Li B; Liu Y; Wang L; Feng W
    Small; 2023 Sep; 19(39):e2301957. PubMed ID: 37231557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiative-Cooling Composites with Enhanced Infrared Emissivity by Structural Infrared Scattering through Indium Tin Oxide Nanoparticles in a Polymer Matrix.
    Park S; Pal SK; Otoufat T; Kim G
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):16026-16033. PubMed ID: 36920422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-Layered Thin Films for Simultaneous Infrared Camouflage and Radiative Cooling.
    Zhang L; Zhang W; Liu Y; Liu L
    Materials (Basel); 2023 Jun; 16(11):. PubMed ID: 37297322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser Dynamic Control of the Thermal Emissivity of a Planar Cavity Structure Based on a Phase-Change Material.
    Kang D; Kim Y; Lee M
    ACS Appl Mater Interfaces; 2024 Jan; 16(4):4925-4933. PubMed ID: 38229510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.