These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38180834)

  • 1. Protocol for 3D and 4D printing of highly conductive metallic composite using liquid metal gels.
    Xing R; Huang R; Qi W; Kong J; Dickey MD
    STAR Protoc; 2024 Mar; 5(1):102813. PubMed ID: 38180834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D-Printed Hydrogel Composites for Predictive Temporal (4D) Cellular Organizations and Patterned Biogenic Mineralization.
    McCracken JM; Rauzan BM; Kjellman JCE; Kandel ME; Liu YH; Badea A; Miller LA; Rogers SA; Popescu G; Nuzzo RG
    Adv Healthc Mater; 2019 Jan; 8(1):e1800788. PubMed ID: 30565889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electroless Deposition-Assisted 3D Printing of Micro Circuitries for Structural Electronics.
    Lee S; Wajahat M; Kim JH; Pyo J; Chang WS; Cho SH; Kim JT; Seol SK
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):7123-7130. PubMed ID: 30681321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protocol for preparing patterned superlattice structures by printing assembly technology for multi-channel detection.
    Zhao W; Ren J; Zhang M; Xue Z; Wang T
    STAR Protoc; 2023 Dec; 4(4):102704. PubMed ID: 37943663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D-printable, lightweight, and electrically conductive metal inks based on evaporable emulsion templates jammed with natural rheology modifiers.
    Young Ryu S; Kwak C; Kim J; Kim S; Cho H; Lee J
    J Colloid Interface Sci; 2022 Dec; 628(Pt B):758-767. PubMed ID: 36029590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Ink Writing Based 4D Printing of Materials and Their Applications.
    Wan X; Luo L; Liu Y; Leng J
    Adv Sci (Weinh); 2020 Aug; 7(16):2001000. PubMed ID: 32832355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protocol for deposition of conductive oxides onto 3D-printed materials for electronic device applications.
    Huddy JE; Scheideler WJ
    STAR Protoc; 2022 Sep; 3(3):101523. PubMed ID: 35779258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chitosan and Whey Protein Bio-Inks for 3D and 4D Printing Applications with Particular Focus on Food Industry.
    Yang W; Tu A; Ma Y; Li Z; Xu J; Lin M; Zhang K; Jing L; Fu C; Jiao Y; Huang L
    Molecules; 2021 Dec; 27(1):. PubMed ID: 35011406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low Solids Emulsion Gels Based on Nanocellulose for 3D-Printing.
    Huan S; Ajdary R; Bai L; Klar V; Rojas OJ
    Biomacromolecules; 2019 Feb; 20(2):635-644. PubMed ID: 30240194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 4D Printing of Multi-Hydrogels Using Direct Ink Writing in a Supporting Viscous Liquid.
    Uchida T; Onoe H
    Micromachines (Basel); 2019 Jun; 10(7):. PubMed ID: 31262078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-Demand Programming of Liquid Metal-Composite Microstructures through Direct Ink Write 3D Printing.
    Haake A; Tutika R; Schloer GM; Bartlett MD; Markvicka EJ
    Adv Mater; 2022 May; 34(20):e2200182. PubMed ID: 35353948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D printing of biocompatible low molecular weight gels: Imbricated structures with sacrificial and persistent N-alkyl-d-galactonamides.
    Andriamiseza F; Bordignon D; Payré B; Vaysse L; Fitremann J
    J Colloid Interface Sci; 2022 Jul; 617():156-170. PubMed ID: 35276518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesized biocompatible and conductive ink for 3D printing of flexible electronics.
    Kazemzadeh Farizhandi AA; Khalajabadi SZ; Krishnadoss V; Noshadi I
    J Mech Behav Biomed Mater; 2020 Oct; 110():103960. PubMed ID: 32957251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D printing of a bio-based ink made of cross-linked cellulose nanofibrils with various metal cations.
    Mietner JB; Jiang X; Edlund U; Saake B; Navarro JRG
    Sci Rep; 2021 Mar; 11(1):6461. PubMed ID: 33742068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser-assisted direct ink writing of planar and 3D metal architectures.
    Skylar-Scott MA; Gunasekaran S; Lewis JA
    Proc Natl Acad Sci U S A; 2016 May; 113(22):6137-42. PubMed ID: 27185932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembled zein organogels as in situ forming implant drug delivery system and 3D printing ink.
    Raza A; Hayat U; Zhang X; Wang JY
    Int J Pharm; 2022 Nov; 627():122206. PubMed ID: 36126824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-Material Direct Ink Writing (DIW) for Complex 3D Metallic Structures with Removable Supports.
    Xu C; Quinn B; Lebel LL; Therriault D; L'Espérance G
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):8499-8506. PubMed ID: 30689948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variable Stiffness Conductive Composites by 4D Printing Dual Materials Alternately.
    Long F; Xu G; Wang J; Ren Y; Cheng Y
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct Laser Interference Ink Printing Using Copper Metal-Organic Decomposition Ink for Nanofabrication.
    Park JH; Lee JW; Ma YW; Kang BS; Hong SM; Shin BS
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced Polymer Designs for Direct-Ink-Write 3D Printing.
    Li L; Lin Q; Tang M; Duncan AJE; Ke C
    Chemistry; 2019 Aug; 25(46):10768-10781. PubMed ID: 31087700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.