These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 3818092)

  • 41. Sucrose-6-phosphate hydrolase from Streptococcus mutans.
    Chassy BM; Porter EV
    Methods Enzymol; 1982; 90 Pt E():556-9. PubMed ID: 7154969
    [No Abstract]   [Full Text] [Related]  

  • 42. Regulation of glucosyl- and fructosyltransferase synthesis by continuous cultures of Streptococcus mutans.
    Wenham DG; Hennessey TD; Cole JA
    J Gen Microbiol; 1979 Sep; 114(1):117-24. PubMed ID: 521790
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of carbohydrates on fructosyltransferase expression and distribution in Streptococcus mutans GS-5 biofilms.
    Rozen R; Bachrach G; Steinberg D
    Carbohydr Res; 2004 Dec; 339(18):2883-8. PubMed ID: 15582615
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular cloning and characterization of scrB, the structural gene for the Streptococcus mutans phosphoenolpyruvate-dependent sucrose phosphotransferase system sucrose-6-phosphate hydrolase.
    Lunsford RD; Macrina FL
    J Bacteriol; 1986 May; 166(2):426-34. PubMed ID: 3009399
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Regulation and function of sucrose 6-phosphate hydrolase in Streptococcus mutans.
    St Martin EJ; Wittenberger CL
    Infect Immun; 1979 Nov; 26(2):487-91. PubMed ID: 94907
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Fermentative synthesis and hydrolysis of fructans].
    Maĭko II; Bobrinyk LD; Malinova NIa
    Ukr Biokhim Zh (1999); 2000; 72(2):14-8. PubMed ID: 10979574
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Crystal structure of 6-SST/6-SFT from Pachysandra terminalis, a plant fructan biosynthesizing enzyme in complex with its acceptor substrate 6-kestose.
    Lammens W; Le Roy K; Yuan S; Vergauwen R; Rabijns A; Van Laere A; Strelkov SV; Van den Ende W
    Plant J; 2012 Apr; 70(2):205-19. PubMed ID: 22098191
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Combined extracellular sucrolytic enzyme power from a strain of Streptococcus mutans, and purification results.
    Aksnes A
    Scand J Dent Res; 1978 Dec; 86(6):459-69. PubMed ID: 284569
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fructosyltransferase Activities in the Leaf Growth Zone of Tall Fescue.
    Luscher M; Nelson CJ
    Plant Physiol; 1995 Apr; 107(4):1419-1425. PubMed ID: 12228445
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Decreased expression of fructosyltransferase genes in asparagus roots may contribute to efficient fructan degradation during asparagus spear harvesting.
    Ueno K; Sonoda T; Yoshida M; Kawakami A; Shiomi N; Onodera S
    Plant Physiol Biochem; 2020 Nov; 156():192-200. PubMed ID: 32971365
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An acceptor-substrate binding site determining glycosyl transfer emerges from mutant analysis of a plant vacuolar invertase and a fructosyltransferase.
    Altenbach D; Rudiño-Pinera E; Olvera C; Boller T; Wiemken A; Ritsema T
    Plant Mol Biol; 2009 Jan; 69(1-2):47-56. PubMed ID: 18821058
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The fructosyltransferase of Streptococcus salivarius.
    Jacques NA
    New Phytol; 1993 Mar; 123(3):429-435. PubMed ID: 33874123
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Raffinose Induces Biofilm Formation by Streptococcus mutans in Low Concentrations of Sucrose by Increasing Production of Extracellular DNA and Fructan.
    Nagasawa R; Sato T; Senpuku H
    Appl Environ Microbiol; 2017 Aug; 83(15):. PubMed ID: 28526794
    [No Abstract]   [Full Text] [Related]  

  • 54. Wheat stem reserves and salinity tolerance: molecular dissection of fructan biosynthesis and remobilization to grains.
    Sharbatkhari M; Shobbar ZS; Galeshi S; Nakhoda B
    Planta; 2016 Jul; 244(1):191-202. PubMed ID: 27016249
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Calcium dependence of the cell-associated fructosyltransferase of Streptococcus salivarius.
    Jacques NA
    Carbohydr Res; 1984 Apr; 127(2):349-55. PubMed ID: 6722843
    [No Abstract]   [Full Text] [Related]  

  • 56. Extracellular beta-D-fructofuranosidase elaborated by Streptococcus salivarius strain 51: preparation, and mode of action on a levan and on homologues of inulobiose.
    Marshall K; Weigel H
    Carbohydr Res; 1980 Aug; 83(2):315-20. PubMed ID: 7190873
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An invertase with unusual properties secreted by sucrose-grown cells of Corynebacterium murisepticum.
    Nadkarni MA; Pandey VN; Pradhan DS
    Indian J Biochem Biophys; 1993 Jun; 30(3):156-9. PubMed ID: 8406545
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cariogenicity of Streptococcus mutans strains with defects in fructan metabolism assessed in a program-fed specific-pathogen-free rat model.
    Burne RA; Chen YY; Wexler DL; Kuramitsu H; Bowen WH
    J Dent Res; 1996 Aug; 75(8):1572-7. PubMed ID: 8906125
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Purification and preliminary characterization of exo-beta-D-fructosidase in Streptococcus salivarius KTA-19.
    Takahashi N; Mizuno F; Takamori K
    Infect Immun; 1985 Jan; 47(1):271-6. PubMed ID: 3965399
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Degradation of starch and its hydrolytic products by oral bacteria.
    Glor EB; Miller CH; Spandau DF
    J Dent Res; 1988 Jan; 67(1):75-81. PubMed ID: 11039050
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.