These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 38180958)

  • 1. Investigating the potential of aggregated mobility indices for inferring public transport ridership changes.
    Lizana M; Choudhury C; Watling D
    PLoS One; 2024; 19(1):e0296686. PubMed ID: 38180958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impacts of COVID-19 on public transport ridership in Sweden: Analysis of ticket validations, sales and passenger counts.
    Jenelius E; Cebecauer M
    Transp Res Interdiscip Perspect; 2020 Nov; 8():100242. PubMed ID: 34173478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of COVID-19 and related containment measures on Bangkok's public transport ridership.
    Siewwuttanagul S; Jittrapirom P
    Transp Res Interdiscip Perspect; 2023 Jan; 17():100737. PubMed ID: 36504757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the bumpy road to recovery: resilience of public transport ridership during COVID-19 in 15 European cities.
    Manout O; Bouzouina L; Kourtit K; Nijkamp P
    Lett Spat Resour Sci; 2023; 16(1):14. PubMed ID: 37035016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impacts of COVID-19 and pandemic control measures on public transport ridership in European urban areas - The cases of Vienna, Innsbruck, Oslo, and Agder.
    Rasca S; Markvica K; Ivanschitz BP
    Transp Res Interdiscip Perspect; 2021 Jun; 10():100376. PubMed ID: 34514371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mining urban sustainable performance: Spatio-temporal emission potential changes of urban transit buses in post-COVID-19 future.
    Sui Y; Zhang H; Shang W; Sun R; Wang C; Ji J; Song X; Shao F
    Appl Energy; 2020 Dec; 280():115966. PubMed ID: 33052166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of COVID-19 epidemic on public transport ridership and frequencies. A case study from Tampere, Finland.
    Tiikkaja H; Viri R
    Transp Res Interdiscip Perspect; 2021 Jun; 10():100348. PubMed ID: 36844005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impacts of COVID-19 on urban rail transit ridership using the Synthetic Control Method.
    Xin M; Shalaby A; Feng S; Zhao H
    Transp Policy (Oxf); 2021 Sep; 111():1-16. PubMed ID: 36568355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disparities in travel times between car and transit: Spatiotemporal patterns in cities.
    Liao Y; Gil J; Pereira RHM; Yeh S; Verendel V
    Sci Rep; 2020 Mar; 10(1):4056. PubMed ID: 32132647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deviation of peak hours for metro stations based on least square support vector machine.
    Yu L; Cui M; Dai S
    PLoS One; 2023; 18(9):e0291497. PubMed ID: 37703275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data-driven analysis of the impact of COVID-19 on Madrid's public transport during each phase of the pandemic.
    Fernández Pozo R; Wilby MR; Vinagre Díaz JJ; Rodríguez González AB
    Cities; 2022 Aug; 127():103723. PubMed ID: 35530724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Node, place, ridership, and time model for rail-transit stations: a case study.
    Amini Pishro A; Yang Q; Zhang S; Amini Pishro M; Zhang Z; Zhao Y; Postel V; Huang D; Li W
    Sci Rep; 2022 Sep; 12(1):16120. PubMed ID: 36167963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multiple mediation analysis to untangle the impacts of COVID-19 on nationwide bus ridership in the United States.
    Ziedan A; Lima L; Brakewood C
    Transp Res Part A Policy Pract; 2023 Jul; 173():103718. PubMed ID: 37234751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disparities in the Impacts of the COVID-19 Pandemic on Public Transit Ridership in Austin, Texas, U.S.A.
    Jiao J; Hansen K; Azimian A
    Transp Res Rec; 2023 Apr; 2677(4):287-297. PubMed ID: 37153206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determining factors affecting public bike ridership and its spatial change before and after COVID-19.
    Kim J; Lee S
    Travel Behav Soc; 2023 Apr; 31():24-36. PubMed ID: 36405768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transit environments for physical activity: Relationship between micro-scale built environment features surrounding light rail stations and ridership in Houston, Texas.
    Lanza K; Oluyomi A; Durand C; Gabriel KP; Knell G; Hoelscher DM; Ranjit N; Salvo D; Walker TJ; Kohl HW
    J Transp Health; 2020 Dec; 19():100924. PubMed ID: 32904408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viability of compact cities in the post-COVID-19 era: subway ridership variations in Seoul Korea.
    Kwon D; Oh SES; Choi S; Kim BHS
    Ann Reg Sci; 2022 Mar; ():1-29. PubMed ID: 35281751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring Equity in Public Transportation Planning Using Smart Card Data.
    Ghasemlou K; Ergun M; Dadashzadeh N
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33926048
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.