These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38181154)

  • 1. Phonon Topology and Winding of Spectral Weight in Graphite.
    Andriushin ND; Sukhanov AS; Korshunov AN; Pavlovskii MS; Rahn MC; Nikitin SE
    Phys Rev Lett; 2023 Dec; 131(24):246601. PubMed ID: 38181154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dirac Magnons, Nodal Lines, and Nodal Plane in Elemental Gadolinium.
    Scheie A; Laurell P; McClarty PA; Granroth GE; Stone MB; Moessner R; Nagler SE
    Phys Rev Lett; 2022 Mar; 128(9):097201. PubMed ID: 35302826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LO-mode phonon of KCl and NaCl at 300 K by inelastic x-ray scattering measurements and first principles calculations.
    Togo A; Hayashi H; Tadano T; Tsutsui S; Tanaka I
    J Phys Condens Matter; 2022 Jul; 34(36):. PubMed ID: 35728792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topological Phase Transition and Phonon-Space Dirac Topology Surfaces in ZrTe_{5}.
    Aryal N; Jin X; Li Q; Tsvelik AM; Yin W
    Phys Rev Lett; 2021 Jan; 126(1):016401. PubMed ID: 33480797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phonon Driven Floquet Matter.
    Hübener H; De Giovannini U; Rubio A
    Nano Lett; 2018 Feb; 18(2):1535-1542. PubMed ID: 29361223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Observation of Topological Phonons in Graphene.
    Li J; Li J; Tang J; Tao Z; Xue S; Liu J; Peng H; Chen XQ; Guo J; Zhu X
    Phys Rev Lett; 2023 Sep; 131(11):116602. PubMed ID: 37774282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. All Magic Angles in Twisted Bilayer Graphene are Topological.
    Song Z; Wang Z; Shi W; Li G; Fang C; Bernevig BA
    Phys Rev Lett; 2019 Jul; 123(3):036401. PubMed ID: 31386469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of stable three-dimensional Dirac semimetals with nontrivial topology.
    Yang BJ; Nagaosa N
    Nat Commun; 2014 Sep; 5():4898. PubMed ID: 25222476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pressure dependence of transverse acoustic phonon energy in ferropericlase across the spin transition.
    Fukui H; Baron AQR; Ishikawa D; Uchiyama H; Ohishi Y; Tsuchiya T; Kobayashi H; Matsuzaki T; Yoshino T; Katsura T
    J Phys Condens Matter; 2017 Jun; 29(24):245401. PubMed ID: 28452741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Moiré Phonons in Magic-Angle Twisted Bilayer Graphene.
    Liu X; Peng R; Sun Z; Liu J
    Nano Lett; 2022 Oct; 22(19):7791-7797. PubMed ID: 36170965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coexistence of topological node surface and Dirac fermions in phonon-mediated superconductor YB
    Wang S; Zhong M; Liu H; Ju M
    Phys Chem Chem Phys; 2024 Jan; 26(2):1454-1461. PubMed ID: 38113107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pressure engineering of the Dirac fermions in quasi-one-dimensional Tl
    Song Z; Li B; Xu C; Wu S; Qian B; Chen T; Biswas PK; Xu X; Sun J
    J Phys Condens Matter; 2020 May; 32(21):215402. PubMed ID: 32032009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing Enhanced Electron-Phonon Coupling in Graphene by Infrared Resonance Raman Spectroscopy.
    Venanzi T; Graziotto L; Macheda F; Sotgiu S; Ouaj T; Stellino E; Fasolato C; Postorino P; Mišeikis V; Metzelaars M; Kögerler P; Beschoten B; Coletti C; Roddaro S; Calandra M; Ortolani M; Stampfer C; Mauri F; Baldassarre L
    Phys Rev Lett; 2023 Jun; 130(25):256901. PubMed ID: 37418733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recipe for Dirac Phonon States with a Quantized Valley Berry Phase in Two-Dimensional Hexagonal Lattices.
    Jin Y; Wang R; Xu H
    Nano Lett; 2018 Dec; 18(12):7755-7760. PubMed ID: 30456958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Full consideration of acoustic phonon scatterings in two-dimensional Dirac materials.
    Van Nguyen K; Chang YC
    Phys Chem Chem Phys; 2020 Feb; 22(7):3999-4009. PubMed ID: 32022037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observation of a Folded Dirac Cone in Heavily Doped Graphene.
    Wang C; Wang K; Wang H; Tian Q; Zong J; Qiu X; Ren W; Wang L; Li FS; Zhang WB; Zhang H; Zhang Y
    J Phys Chem Lett; 2023 Aug; 14(32):7149-7156. PubMed ID: 37540032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dirac point movement and topological phase transition in patterned graphene.
    Dvorak M; Wu Z
    Nanoscale; 2015 Feb; 7(8):3645-50. PubMed ID: 25636026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observation of magnetophonon resonance of Dirac fermions in graphite.
    Yan J; Goler S; Rhone TD; Han M; He R; Kim P; Pellegrini V; Pinczuk A
    Phys Rev Lett; 2010 Nov; 105(22):227401. PubMed ID: 21231420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice.
    Tarruell L; Greif D; Uehlinger T; Jotzu G; Esslinger T
    Nature; 2012 Mar; 483(7389):302-5. PubMed ID: 22422263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dispersion of electron-phonon resonances in one-layer graphene and its demonstration in micro-Raman scattering.
    Strelchuk VV; Nikolenko AS; Gubanov VO; Biliy MM; Bulavin LA
    J Nanosci Nanotechnol; 2012 Nov; 12(11):8671-5. PubMed ID: 23421263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.