BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38181211)

  • 1. Cadence Modulation during Eccentric Cycling Affects Perception of Effort But Not Neuromuscular Alterations.
    Mater A; Boly A; Martin A; Lepers R
    Med Sci Sports Exerc; 2024 May; 56(5):893-901. PubMed ID: 38181211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Concentric versus eccentric cycling at equal power output or effort perception: Neuromuscular alterations and muscle pain.
    Clos P; Mater A; Laroche D; Lepers R
    Scand J Med Sci Sports; 2022 Jan; 32(1):45-59. PubMed ID: 34533875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Cadence on Physiological and Perceptual Responses during Eccentric Cycling at Different Power Outputs.
    Mater A; Boly A; Assadi H; Martin A; Lepers R
    Med Sci Sports Exerc; 2023 Jun; 55(6):1105-1113. PubMed ID: 36719652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscle activation during cycling at different cadences: effect of maximal strength capacity.
    Bieuzen F; Lepers R; Vercruyssen F; Hausswirth C; Brisswalter J
    J Electromyogr Kinesiol; 2007 Dec; 17(6):731-8. PubMed ID: 16996277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Torque, power and muscle activation of eccentric and concentric isokinetic cycling.
    Green DJ; Thomas K; Ross EZ; Green SC; Pringle JSM; Howatson G
    J Electromyogr Kinesiol; 2018 Jun; 40():56-63. PubMed ID: 29631117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors contributing to lower metabolic demand of eccentric compared with concentric cycling.
    Peñailillo L; Blazevich AJ; Nosaka K
    J Appl Physiol (1985); 2017 Oct; 123(4):884-893. PubMed ID: 28663378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of cycling cadence on contractile and neural properties of knee extensors.
    Lepers R; Millet GY; Maffiuletti NA
    Med Sci Sports Exerc; 2001 Nov; 33(11):1882-8. PubMed ID: 11689739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prior muscular exercise affects cycling pattern.
    Bieuzen F; Hausswirth C; Couturier A; Brisswalter J
    Int J Sports Med; 2008 May; 29(5):401-7. PubMed ID: 17879882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuromuscular and perceptual responses to moderate-intensity incline, level and decline treadmill exercise.
    Garnier YM; Lepers R; Dubau Q; Pageaux B; Paizis C
    Eur J Appl Physiol; 2018 Oct; 118(10):2039-2053. PubMed ID: 29992466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corticospinal changes induced by fatiguing eccentric versus concentric exercise.
    Garnier YM; Paizis C; Lepers R
    Eur J Sport Sci; 2019 Mar; 19(2):166-176. PubMed ID: 30016203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscle fascicle behavior during eccentric cycling and its relation to muscle soreness.
    Peñailillo L; Blazevich AJ; Nosaka K
    Med Sci Sports Exerc; 2015 Apr; 47(4):708-17. PubMed ID: 25116087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuromuscular, metabolic, and kinetic adaptations for skilled pedaling performance in cyclists.
    Takaishi T; Yamamoto T; Ono T; Ito T; Moritani T
    Med Sci Sports Exerc; 1998 Mar; 30(3):442-9. PubMed ID: 9526892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leg Muscle Activity and Perception of Effort before and after Four Short Sessions of Submaximal Eccentric Cycling.
    Clos P; Lepers R
    Int J Environ Res Public Health; 2020 Oct; 17(21):. PubMed ID: 33105553
    [No Abstract]   [Full Text] [Related]  

  • 14. Influence of cycling cadence on neuromuscular activity of the knee extensors in humans.
    Sarre G; Lepers R; Maffiuletti N; Millet G; Martin A
    Eur J Appl Physiol; 2003 Jan; 88(4-5):476-9. PubMed ID: 12527981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in central and peripheral neuromuscular fatigue indices after concentric versus eccentric contractions of the knee extensors.
    Souron R; Nosaka K; Jubeau M
    Eur J Appl Physiol; 2018 Apr; 118(4):805-816. PubMed ID: 29411127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuromuscular fatigue following constant versus variable-intensity endurance cycling in triathletes.
    Lepers R; Theurel J; Hausswirth C; Bernard T
    J Sci Med Sport; 2008 Jul; 11(4):381-9. PubMed ID: 17499023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence of neuromuscular fatigue after prolonged cycling exercise.
    Lepers R; Hausswirth C; Maffiuletti N; Brisswalter J; van Hoecke J
    Med Sci Sports Exerc; 2000 Nov; 32(11):1880-6. PubMed ID: 11079517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of isokinetic cycling versus weight training on maximal power output and endurance performance in cycling.
    Koninckx E; Van Leemputte M; Hespel P
    Eur J Appl Physiol; 2010 Jul; 109(4):699-708. PubMed ID: 20213468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Impact of Cycling Cadence on Respiratory and Hemodynamic Responses to Exercise.
    Mitchell RA; Boyle KG; Ramsook AH; Puyat JH; Henderson WR; Koehle MS; Guenette JA
    Med Sci Sports Exerc; 2019 Aug; 51(8):1727-1735. PubMed ID: 30817718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic and muscle damage profiles of concentric versus repeated eccentric cycling.
    Peñailillo L; Blazevich A; Numazawa H; Nosaka K
    Med Sci Sports Exerc; 2013 Sep; 45(9):1773-81. PubMed ID: 23475167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.