BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38181271)

  • 21. Identification of key genes associated with the progression of intrahepatic cholangiocarcinoma using weighted gene co-expression network analysis.
    Ye Z; Zeng Z; Wang D; Lei S; Shen Y; Chen Z
    Oncol Lett; 2020 Jul; 20(1):483-494. PubMed ID: 32565973
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of key genes associated with the human abdominal aortic aneurysm based on the gene expression profile.
    Chen X; Zheng C; He Y; Tian L; Li J; Li D; Jin W; Li M; Zheng S
    Mol Med Rep; 2015 Dec; 12(6):7891-8. PubMed ID: 26498477
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Profiles of immune infiltration in abdominal aortic aneurysm and their associated marker genes: a gene expression-based study.
    Li T; Wang T; Zhao X
    Braz J Med Biol Res; 2021; 54(11):e11372. PubMed ID: 34495251
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ARHGAP21 Is Involved in the Carcinogenic Mechanism of Cholangiocarcinoma: A Study Based on Bioinformatic Analyses and Experimental Validation.
    Wang Z; Wu S; Wang G; Yang Z; Zhang Y; Zhu C; Qin X
    Medicina (Kaunas); 2023 Jan; 59(1):. PubMed ID: 36676763
    [No Abstract]   [Full Text] [Related]  

  • 25. Identification of crucial genes involved in pathogenesis of regional weakening of the aortic wall.
    Zu HL; Liu HW; Wang HY
    Hereditas; 2021 Dec; 158(1):35. PubMed ID: 34852854
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Establishment of a Combined Diagnostic Model of Abdominal Aortic Aneurysm with Random Forest and Artificial Neural Network.
    Duan Y; Xie E; Liu C; Sun J; Deng J
    Biomed Res Int; 2022; 2022():7173972. PubMed ID: 35299890
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of novel genetic biomarkers and treatment targets for arteriosclerosis-related abdominal aortic aneurysm using bioinformatic tools.
    Niu F; Liu Z; Liu P; Pan H; Bi J; Li P; Luo G; Chen Y; Zhang X; Dai X
    Math Biosci Eng; 2021 Nov; 18(6):9761-9774. PubMed ID: 34814367
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Role and Mechanism of SIRT6 in Regulating Phenotype Transformation of Vascular Smooth Muscle Cells in Abdominal Aortic Aneurysm.
    Guan X; Xin H; Xu M; Ji J; Li J
    Comput Math Methods Med; 2022; 2022():3200798. PubMed ID: 35035519
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SEL1L3 as a link molecular between renal cell carcinoma and atherosclerosis based on bioinformatics analysis and experimental verification.
    Wang H; Ma X; Li S; Ni X
    Aging (Albany NY); 2023 Nov; 15(22):13150-13162. PubMed ID: 37993256
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The identification of key genes and pathways in hepatocellular carcinoma by bioinformatics analysis of high-throughput data.
    Zhang C; Peng L; Zhang Y; Liu Z; Li W; Chen S; Li G
    Med Oncol; 2017 Jun; 34(6):101. PubMed ID: 28432618
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Screening and identification of key genes between liver hepatocellular carcinoma (LIHC) and cholangiocarcinoma (CHOL) by bioinformatic analysis.
    Kang X; Bai L; Qi X; Wang J
    Medicine (Baltimore); 2020 Dec; 99(50):e23563. PubMed ID: 33327311
    [TBL] [Abstract][Full Text] [Related]  

  • 32. KIF20A as a potential biomarker of renal and bladder cancers based on bioinformatics and experimental verification.
    Wang H; Ma X; Li S; Su J; Fan B; Liu B; Ni X
    Aging (Albany NY); 2023 May; 15(11):4714-4733. PubMed ID: 37310408
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of Key Biomarkers and Potential Molecular Mechanisms in Renal Cell Carcinoma by Bioinformatics Analysis.
    Li F; Guo P; Dong K; Guo P; Wang H; Lv X
    J Comput Biol; 2019 Nov; 26(11):1278-1295. PubMed ID: 31233342
    [No Abstract]   [Full Text] [Related]  

  • 34. CD14 and CSF1R as developmental molecular targets for the induction of osteoarthritis.
    Zheng M; Li Z; Feng Y; Zhang X
    Int J Clin Exp Pathol; 2023; 16(8):184-198. PubMed ID: 37693684
    [TBL] [Abstract][Full Text] [Related]  

  • 35.
    Wu J; Guo Y; Zuo ZF; Zhu ZW; Han L
    World J Gastroenterol; 2023 May; 29(19):2961-2978. PubMed ID: 37274806
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of key genes involved in calcific aortic valve disease based on integrated bioinformatics analysis.
    Liu YH; Liu Y; Xin YF; Zhang Q; Ding ML
    Exp Biol Med (Maywood); 2023 Jan; 248(1):52-60. PubMed ID: 36151748
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Single-Cell Sequencing Analysis and Multiple Machine Learning Methods Identified G0S2 and HPSE as Novel Biomarkers for Abdominal Aortic Aneurysm.
    Xiong T; Lv XS; Wu GJ; Guo YX; Liu C; Hou FX; Wang JK; Fu YF; Liu FQ
    Front Immunol; 2022; 13():907309. PubMed ID: 35769488
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Key ferroptosis-related genes in abdominal aortic aneurysm formation and rupture as determined by combining bioinformatics techniques.
    Ren J; Lv Y; Wu L; Chen S; Lei C; Yang D; Li F; Liu C; Zheng Y
    Front Cardiovasc Med; 2022; 9():875434. PubMed ID: 36017103
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of Novel Long Noncoding RNAs and Their Role in Abdominal Aortic Aneurysm.
    Maitiseyiti A; Ci H; Fang Q; Guan S; Shawuti A; Wang H; Ge X
    Biomed Res Int; 2020; 2020():3502518. PubMed ID: 33415145
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of biomarkers and analysis of infiltrated immune cells in stable and ruptured abdominal aortic aneurysms.
    Chen Y; Ouyang T; Fang C; Tang CE; Lei K; Jiang L; Luo F
    Front Cardiovasc Med; 2022; 9():941185. PubMed ID: 36158807
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.