These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38181340)

  • 1. Autonomous Distribution of Programmable Multiqubit Entanglement in a Dual-Rail Quantum Network.
    Agustí J; Zhang XHH; Minoguchi Y; Rabl P
    Phys Rev Lett; 2023 Dec; 131(25):250801. PubMed ID: 38181340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Harvesting Multiqubit Entanglement from Ultrastrong Interactions in Circuit Quantum Electrodynamics.
    Armata F; Calajo G; Jaako T; Kim MS; Rabl P
    Phys Rev Lett; 2017 Nov; 119(18):183602. PubMed ID: 29219543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-Field Generation and Control of Ultrafast, Multipartite Entanglement for Quantum Nanoplasmonic Networks.
    Bello FD; Kongsuwan N; Hess O
    Nano Lett; 2022 Apr; 22(7):2801-2808. PubMed ID: 35360907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental characterization of a non-local convertor for quantum photonic networks.
    Mičuda M; Stárek R; Marek P; Miková M; Straka I; Ježek M; Tashima T; Özdemir ŞK; Tame M
    Opt Express; 2017 Apr; 25(7):7839-7848. PubMed ID: 28380902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-scale continuous-variable dual-rail cluster entangled state based on spatial mode comb.
    Zhang J; Wang JJ; Yang RG; Liu K; Gao JR
    Opt Express; 2017 Oct; 25(22):27172-27181. PubMed ID: 29092196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Speedup of quantum evolution of multiqubit entanglement states.
    Zhang YJ; Han W; Xia YJ; Tian JX; Fan H
    Sci Rep; 2016 Jun; 6():27349. PubMed ID: 27283757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Entanglement in a 20-Qubit Superconducting Quantum Computer.
    Mooney GJ; Hill CD; Hollenberg LCL
    Sci Rep; 2019 Sep; 9(1):13465. PubMed ID: 31530848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Entangled States Are Harder to Transfer than Product States.
    Apollaro TJG; Lorenzo S; Plastina F; Consiglio M; Życzkowski K
    Entropy (Basel); 2022 Dec; 25(1):. PubMed ID: 36673187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heralded entanglement between solid-state qubits separated by three metres.
    Bernien H; Hensen B; Pfaff W; Koolstra G; Blok MS; Robledo L; Taminiau TH; Markham M; Twitchen DJ; Childress L; Hanson R
    Nature; 2013 May; 497(7447):86-90. PubMed ID: 23615617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metrological Characterization of Non-Gaussian Entangled States of Superconducting Qubits.
    Xu K; Zhang YR; Sun ZH; Li H; Song P; Xiang Z; Huang K; Li H; Shi YH; Chen CT; Song X; Zheng D; Nori F; Wang H; Fan H
    Phys Rev Lett; 2022 Apr; 128(15):150501. PubMed ID: 35499907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum tomography of an entangled three-qubit state in silicon.
    Takeda K; Noiri A; Nakajima T; Yoneda J; Kobayashi T; Tarucha S
    Nat Nanotechnol; 2021 Sep; 16(9):965-969. PubMed ID: 34099899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A quantum processor based on coherent transport of entangled atom arrays.
    Bluvstein D; Levine H; Semeghini G; Wang TT; Ebadi S; Kalinowski M; Keesling A; Maskara N; Pichler H; Greiner M; Vuletić V; Lukin MD
    Nature; 2022 Apr; 604(7906):451-456. PubMed ID: 35444318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Initializing 2
    Kothe G; Lukaschek M; Yago T; Link G; Ivanov KL; Lin TS
    J Phys Chem Lett; 2021 Apr; 12(14):3647-3654. PubMed ID: 33826347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generating spatially entangled itinerant photons with waveguide quantum electrodynamics.
    Kannan B; Campbell DL; Vasconcelos F; Winik R; Kim DK; Kjaergaard M; Krantz P; Melville A; Niedzielski BM; Yoder JL; Orlando TP; Gustavsson S; Oliver WD
    Sci Adv; 2020 Oct; 6(41):. PubMed ID: 33028523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of genuine entanglement up to 51 superconducting qubits.
    Cao S; Wu B; Chen F; Gong M; Wu Y; Ye Y; Zha C; Qian H; Ying C; Guo S; Zhu Q; Huang HL; Zhao Y; Li S; Wang S; Yu J; Fan D; Wu D; Su H; Deng H; Rong H; Li Y; Zhang K; Chung TH; Liang F; Lin J; Xu Y; Sun L; Guo C; Li N; Huo YH; Peng CZ; Lu CY; Yuan X; Zhu X; Pan JW
    Nature; 2023 Jul; 619(7971):738-742. PubMed ID: 37438533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. General monogamy relation for the entanglement of formation in multiqubit systems.
    Bai YK; Xu YF; Wang ZD
    Phys Rev Lett; 2014 Sep; 113(10):100503. PubMed ID: 25238341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and Analysis of Two-Dimensional Four-Qubit Entangled States with Photon Polarization and Spatial Path.
    Zhao J; Wang M; Sun B; Cao L; Yang Y; Liu X; Zhang Q; Lu H; Driscoll KA
    Entropy (Basel); 2022 Sep; 24(10):. PubMed ID: 37420409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong monogamy conjecture for multiqubit entanglement: the four-qubit case.
    Regula B; Di Martino S; Lee S; Adesso G
    Phys Rev Lett; 2014 Sep; 113(11):110501. PubMed ID: 25259963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental Demonstration of a Resonator-Induced Phase Gate in a Multiqubit Circuit-QED System.
    Paik H; Mezzacapo A; Sandberg M; McClure DT; Abdo B; Córcoles AD; Dial O; Bogorin DF; Plourde BL; Steffen M; Cross AW; Gambetta JM; Chow JM
    Phys Rev Lett; 2016 Dec; 117(25):250502. PubMed ID: 28036205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-Photon Solutions to the Multiqubit Multimode Quantum Rabi Model for Fast W-State Generation.
    Peng J; Zheng J; Yu J; Tang P; Barrios GA; Zhong J; Solano E; Albarrán-Arriagada F; Lamata L
    Phys Rev Lett; 2021 Jul; 127(4):043604. PubMed ID: 34355937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.