These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 38181408)

  • 21. Electrochemical Synthesis of the Energetic Combustion Catalyst Co(BODN)·9H
    Gou X; Liu W; Xu Y; Ma Z; Zhang X; Zhang J
    Langmuir; 2023 Dec; 39(48):17498-17512. PubMed ID: 37983616
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development and Evolution of Energetic Cocrystals.
    Bennion JC; Matzger AJ
    Acc Chem Res; 2021 Apr; 54(7):1699-1710. PubMed ID: 33723995
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermodynamic Stability Is a Poor Indicator of Cocrystallization in Models of Organic Molecules.
    Pimonova Y; Carpenter JE; Gruenwald M
    J Am Chem Soc; 2024 Jan; 146(4):2805-2815. PubMed ID: 38241026
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tetranitroacetimidic acid: a high oxygen oxidizer and potential replacement for ammonium perchlorate.
    Vo TT; Parrish DA; Shreeve JM
    J Am Chem Soc; 2014 Aug; 136(34):11934-7. PubMed ID: 25105731
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent Advancements in Pharmaceutical Cocrystals, Preparation Methods, and their Applications.
    Manchanda D; Kumar A; Nanda A
    Curr Pharm Des; 2021; 27(44):4477-4495. PubMed ID: 33858309
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Renaissance of dinitroazetidine: novel hybrid energetic boosters and oxidizers.
    Zhilin ES; Ananyev IV; Pivkina AN; Fershtat LL
    Dalton Trans; 2022 Sep; 51(37):14088-14096. PubMed ID: 36040752
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physical stability enhancement of theophylline via cocrystallization.
    Trask AV; Motherwell WD; Jones W
    Int J Pharm; 2006 Aug; 320(1-2):114-23. PubMed ID: 16769188
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Study on the effect of solvent on cocrystallization of CL-20 and HMX through theoretical calculations and experiments.
    Zhao X; Li J; Quan S; Fu X; Meng S; Jiang L; Fan X
    RSC Adv; 2022 Jul; 12(33):21255-21263. PubMed ID: 35975069
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ammonium nitrate: a promising rocket propellant oxidizer.
    Oommen C; Jain SR
    J Hazard Mater; 1999 Jun; 67(3):253-81. PubMed ID: 10370180
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Properties of Mixed Crystal Coprecipitation Substances of Ammonium Nitrate and Potassium Perchlorate Prepared by the Evaporative Solvent Method.
    Zi R; Han Z; Yu Y; Wang C; Zhang X; Guo X; Chen J; Zhang X; Yang J
    ACS Omega; 2024 Jan; 9(1):1573-1590. PubMed ID: 38222512
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Trinitromethyl-triazolone (TNMTO): a highly dense oxidizer.
    Lal S; Staples RJ; Shreeve JM
    Dalton Trans; 2023 Sep; 52(35):12341-12346. PubMed ID: 37591822
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancing the Pharmaceutical Behavior of Nateglinide by Cocrystallization: Physicochemical Assessment of Cocrystal Formation and Informed Use of Differential Scanning Calorimetry for Its Quantitative Characterization.
    Bruni G; Maggi L; Mustarelli P; Sakaj M; Friuli V; Ferrara C; Berbenni V; Girella A; Milanese C; Marini A
    J Pharm Sci; 2019 Apr; 108(4):1529-1539. PubMed ID: 30476510
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Formation of itraconazole-succinic acid cocrystals by gas antisolvent cocrystallization.
    Ober CA; Gupta RB
    AAPS PharmSciTech; 2012 Dec; 13(4):1396-406. PubMed ID: 23054991
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On the anomalous decomposition and reactivity of ammonium and potassium dinitramide.
    Rahm M; Brinck T
    J Phys Chem A; 2010 Mar; 114(8):2845-54. PubMed ID: 20143828
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel Aceclofenac Cocrystals with l-Cystine: Virtual Coformer Screening, Mechanochemical Synthesis, and Physicochemical Investigations.
    Kumar S; Gupta A; Prasad R; Singh S
    Curr Drug Deliv; 2021; 18(1):88-100. PubMed ID: 32807053
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel furosemide cocrystals and selection of high solubility drug forms.
    Goud NR; Gangavaram S; Suresh K; Pal S; Manjunatha SG; Nambiar S; Nangia A
    J Pharm Sci; 2012 Feb; 101(2):664-80. PubMed ID: 22081478
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experimental cocrystal screening and solution based scale-up cocrystallization methods.
    Malamatari M; Ross SA; Douroumis D; Velaga SP
    Adv Drug Deliv Rev; 2017 Aug; 117():162-177. PubMed ID: 28811184
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel strategy for pharmaceutical cocrystal generation without knowledge of stoichiometric ratio: myricetin cocrystals and a ternary phase diagram.
    Hong C; Xie Y; Yao Y; Li G; Yuan X; Shen H
    Pharm Res; 2015 Jan; 32(1):47-60. PubMed ID: 24939640
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New Lidocaine-Based Pharmaceutical Cocrystals: Preparation, Characterization, and Influence of the Racemic vs. Enantiopure Coformer on the Physico-Chemical Properties.
    Ma P; Toussaint B; Roberti EA; Scornet N; Santos Silva A; Castillo Henríquez L; Cadasse M; Négrier P; Massip S; Dufat H; Hammad K; Baraldi C; Gamberini MC; Richard C; Veesler S; Espeau P; Lee T; Corvis Y
    Pharmaceutics; 2023 Mar; 15(4):. PubMed ID: 37111588
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluating the Energetic Driving Force for Cocrystal Formation.
    Taylor CR; Day GM
    Cryst Growth Des; 2018 Feb; 18(2):892-904. PubMed ID: 29445316
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.