These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 38181441)

  • 61. VEGF siRNA Delivery by a Cancer-Specific Cell-Penetrating Peptide.
    Lee YW; Hwang YE; Lee JY; Sohn JH; Sung BH; Kim SC
    J Microbiol Biotechnol; 2018 Mar; 28(3):367-374. PubMed ID: 29316746
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Bacterial magnetosomes-based nanocarriers for co-delivery of cancer therapeutics in vitro.
    Long RM; Dai QL; Zhou X; Cai DH; Hong YZ; Wang SB; Liu YG
    Int J Nanomedicine; 2018; 13():8269-8279. PubMed ID: 30584299
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Therapeutic potentials of short interfering RNAs.
    Tam C; Wong JH; Cheung RCF; Zuo T; Ng TB
    Appl Microbiol Biotechnol; 2017 Oct; 101(19):7091-7111. PubMed ID: 28791440
    [TBL] [Abstract][Full Text] [Related]  

  • 64. An Up-to-date Review on Protein-based Nanocarriers in the Management of Cancer.
    Almalki WH
    Curr Drug Deliv; 2024; 21(4):509-524. PubMed ID: 37165498
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Integrated hollow mesoporous silica nanoparticles for target drug/siRNA co-delivery.
    Ma X; Zhao Y; Ng KW; Zhao Y
    Chemistry; 2013 Nov; 19(46):15593-603. PubMed ID: 24123533
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Synthetic nanocarriers for intracellular protein delivery.
    Du J; Jin J; Yan M; Lu Y
    Curr Drug Metab; 2012 Jan; 13(1):82-92. PubMed ID: 22292811
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Chitosan nanocarriers for microRNA delivery and detection: A preliminary review with emphasis on cancer.
    Sargazi S; Siddiqui B; Qindeel M; Rahdar A; Bilal M; Behzadmehr R; Mirinejad S; Pandey S
    Carbohydr Polym; 2022 Aug; 290():119489. PubMed ID: 35550773
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Nanocarriers based novel and effective drug delivery system.
    Khizar S; Alrushaid N; Alam Khan F; Zine N; Jaffrezic-Renault N; Errachid A; Elaissari A
    Int J Pharm; 2023 Feb; 632():122570. PubMed ID: 36587775
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Knockdown of antiapoptotic genes in breast cancer cells by siRNA loaded into hybrid nanoparticles.
    de Mello LJ; Souza GR; Winter E; Silva AH; Pittella F; Creczynski-Pasa TB
    Nanotechnology; 2017 Apr; 28(17):175101. PubMed ID: 28230534
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Codelivery of STAT3 and PD-L1 siRNA by hyaluronate-TAT trimethyl/thiolated chitosan nanoparticles suppresses cancer progression in tumor-bearing mice.
    Bastaki S; Aravindhan S; Ahmadpour Saheb N; Afsari Kashani M; Evgenievich Dorofeev A; Karoon Kiani F; Jahandideh H; Beigi Dargani F; Aksoun M; Nikkhoo A; Masjedi A; Mahmoodpoor A; Ahmadi M; Dolati S; Namvar Aghdash S; Jadidi-Niaragh F
    Life Sci; 2021 Feb; 266():118847. PubMed ID: 33309720
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Research progress on siRNA delivery with nonviral carriers.
    Gao Y; Liu XL; Li XR
    Int J Nanomedicine; 2011; 6():1017-25. PubMed ID: 21720513
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Folic acid-functionalized polyethylenimine superparamagnetic iron oxide nanoparticles as theranostic agents for magnetic resonance imaging and PD-L1 siRNA delivery for gastric cancer.
    Luo X; Peng X; Hou J; Wu S; Shen J; Wang L
    Int J Nanomedicine; 2017; 12():5331-5343. PubMed ID: 28794626
    [TBL] [Abstract][Full Text] [Related]  

  • 73. High-Capacity Mesoporous Silica Nanocarriers of siRNA for Applications in Retinal Delivery.
    Ultimo A; Orzaez M; Santos-Martinez MJ; Martínez-Máñez R; Marcos MD; Sancenón F; Ruiz-Hernández E
    Int J Mol Sci; 2023 Feb; 24(3):. PubMed ID: 36769075
    [TBL] [Abstract][Full Text] [Related]  

  • 74. CaP coated mesoporous polydopamine nanoparticles with responsive membrane permeation ability for combined photothermal and siRNA therapy.
    Wang Z; Wang L; Prabhakar N; Xing Y; Rosenholm JM; Zhang J; Cai K
    Acta Biomater; 2019 Mar; 86():416-428. PubMed ID: 30611792
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Quick synthesis of a novel combinatorial delivery system of siRNA and doxorubicin for a synergistic anticancer effect.
    Chen M; Wang L; Wang F; Li F; Xia W; Gu H; Chen Y
    Int J Nanomedicine; 2019; 14():3557-3569. PubMed ID: 31190812
    [No Abstract]   [Full Text] [Related]  

  • 76. Role of integrated cancer nanomedicine in overcoming drug resistance.
    Iyer AK; Singh A; Ganta S; Amiji MM
    Adv Drug Deliv Rev; 2013 Nov; 65(13-14):1784-802. PubMed ID: 23880506
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Current status and future perspectives of gold nanoparticle vectors for siRNA delivery.
    Artiga Á; Serrano-Sevilla I; De Matteis L; Mitchell SG; de la Fuente JM
    J Mater Chem B; 2019 Feb; 7(6):876-896. PubMed ID: 32255093
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Gene/paclitaxel co-delivering nanocarriers prepared by framework-induced self-assembly for the inhibition of highly drug-resistant tumors.
    Wang C; Guan W; Peng J; Chen Y; Xu G; Dou H
    Acta Biomater; 2020 Feb; 103():247-258. PubMed ID: 31846802
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Co-delivery of paclitaxel and anti-VEGF siRNA by tripeptide lipid nanoparticle to enhance the anti-tumor activity for lung cancer therapy.
    Zhang C; Zhao Y; Zhang E; Jiang M; Zhi D; Chen H; Cui S; Zhen Y; Cui J; Zhang S
    Drug Deliv; 2020 Dec; 27(1):1397-1411. PubMed ID: 33096948
    [TBL] [Abstract][Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.