BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38181760)

  • 21. DNA-PKcs and PARP1 Bind to Unresected Stalled DNA Replication Forks Where They Recruit XRCC1 to Mediate Repair.
    Ying S; Chen Z; Medhurst AL; Neal JA; Bao Z; Mortusewicz O; McGouran J; Song X; Shen H; Hamdy FC; Kessler BM; Meek K; Helleday T
    Cancer Res; 2016 Mar; 76(5):1078-88. PubMed ID: 26603896
    [TBL] [Abstract][Full Text] [Related]  

  • 22. EEPD1 Rescues Stressed Replication Forks and Maintains Genome Stability by Promoting End Resection and Homologous Recombination Repair.
    Wu Y; Lee SH; Williamson EA; Reinert BL; Cho JH; Xia F; Jaiswal AS; Srinivasan G; Patel B; Brantley A; Zhou D; Shao L; Pathak R; Hauer-Jensen M; Singh S; Kong K; Wu X; Kim HS; Beissbarth T; Gaedcke J; Burma S; Nickoloff JA; Hromas RA
    PLoS Genet; 2015 Dec; 11(12):e1005675. PubMed ID: 26684013
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Removal of RTF2 from Stalled Replisomes Promotes Maintenance of Genome Integrity.
    Kottemann MC; Conti BA; Lach FP; Smogorzewska A
    Mol Cell; 2018 Jan; 69(1):24-35.e5. PubMed ID: 29290612
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rescue of stalled replication forks by RecG: simultaneous translocation on the leading and lagging strand templates supports an active DNA unwinding model of fork reversal and Holliday junction formation.
    McGlynn P; Lloyd RG
    Proc Natl Acad Sci U S A; 2001 Jul; 98(15):8227-34. PubMed ID: 11459957
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Checkpoint responses to replication fork barriers.
    Lambert S; Carr AM
    Biochimie; 2005 Jul; 87(7):591-602. PubMed ID: 15989976
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multiple Rad5 activities mediate sister chromatid recombination to bypass DNA damage at stalled replication forks.
    Minca EC; Kowalski D
    Mol Cell; 2010 Jun; 38(5):649-61. PubMed ID: 20541998
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Building up and breaking down: mechanisms controlling recombination during replication.
    Branzei D; Szakal B
    Crit Rev Biochem Mol Biol; 2017 Aug; 52(4):381-394. PubMed ID: 28325102
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rad52 prevents excessive replication fork reversal and protects from nascent strand degradation.
    Malacaria E; Pugliese GM; Honda M; Marabitti V; Aiello FA; Spies M; Franchitto A; Pichierri P
    Nat Commun; 2019 Mar; 10(1):1412. PubMed ID: 30926821
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Replication fork dynamics and the DNA damage response.
    Jones RM; Petermann E
    Biochem J; 2012 Apr; 443(1):13-26. PubMed ID: 22417748
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Replication Fork Reversal and Protection.
    Qiu S; Jiang G; Cao L; Huang J
    Front Cell Dev Biol; 2021; 9():670392. PubMed ID: 34041245
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tolerating DNA damage during eukaryotic chromosome replication.
    Saugar I; Ortiz-Bazán MÁ; Tercero JA
    Exp Cell Res; 2014 Nov; 329(1):170-7. PubMed ID: 25038291
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phenotypes of
    Flåtten I; Helgesen E; Pedersen IB; Waldminghaus T; Rothe C; Taipale R; Johnsen L; Skarstad K
    J Bacteriol; 2017 Dec; 199(24):. PubMed ID: 28947673
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human single-stranded DNA binding protein 1 (hSSB1/NABP2) is required for the stability and repair of stalled replication forks.
    Bolderson E; Petermann E; Croft L; Suraweera A; Pandita RK; Pandita TK; Helleday T; Khanna KK; Richard DJ
    Nucleic Acids Res; 2014 Jun; 42(10):6326-36. PubMed ID: 24753408
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetic Evidence for Roles of Yeast Mitotic Cyclins at Single-Stranded Gaps Created by DNA Replication.
    Signon L
    G3 (Bethesda); 2018 Feb; 8(2):737-752. PubMed ID: 29279302
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RFWD3-Dependent Ubiquitination of RPA Regulates Repair at Stalled Replication Forks.
    Elia AE; Wang DC; Willis NA; Boardman AP; Hajdu I; Adeyemi RO; Lowry E; Gygi SP; Scully R; Elledge SJ
    Mol Cell; 2015 Oct; 60(2):280-93. PubMed ID: 26474068
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Targeting Replication Stress Response Pathways to Enhance Genotoxic Chemo- and Radiotherapy.
    Nickoloff JA
    Molecules; 2022 Jul; 27(15):. PubMed ID: 35897913
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DNA damage tolerance: when it's OK to make mistakes.
    Chang DJ; Cimprich KA
    Nat Chem Biol; 2009 Feb; 5(2):82-90. PubMed ID: 19148176
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The ATR pathway: fine-tuning the fork.
    Paulsen RD; Cimprich KA
    DNA Repair (Amst); 2007 Jul; 6(7):953-66. PubMed ID: 17531546
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Time for remodeling: SNF2-family DNA translocases in replication fork metabolism and human disease.
    Joseph SA; Taglialatela A; Leuzzi G; Huang JW; Cuella-Martin R; Ciccia A
    DNA Repair (Amst); 2020 Nov; 95():102943. PubMed ID: 32971328
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CtIP mediates replication fork recovery in a FANCD2-regulated manner.
    Yeo JE; Lee EH; Hendrickson EA; Sobeck A
    Hum Mol Genet; 2014 Jul; 23(14):3695-705. PubMed ID: 24556218
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.