BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 38181788)

  • 1. Chronic hypoxia stabilizes 3βHSD1 via autophagy suppression.
    Qin L; Berk M; Chung YM; Cui D; Zhu Z; Chakraborty AA; Sharifi N
    Cell Rep; 2024 Jan; 43(1):113575. PubMed ID: 38181788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypoxia-Reoxygenation Couples 3βHSD1 Enzyme and Cofactor Upregulation to Facilitate Androgen Biosynthesis and Hormone Therapy Resistance in Prostate Cancer.
    Qin L; Chung YM; Berk M; Naelitz B; Zhu Z; Klein E; Chakraborty AA; Sharifi N
    Cancer Res; 2022 Jul; 82(13):2417-2430. PubMed ID: 35536859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BMX controls 3βHSD1 and sex steroid biosynthesis in cancer.
    Li X; Berk M; Goins C; Alyamani M; Chung YM; Wang C; Patel M; Rathi N; Zhu Z; Willard B; Stauffer S; Klein E; Sharifi N
    J Clin Invest; 2023 Jan; 133(2):. PubMed ID: 36647826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intratumoral androgen biosynthesis associated with 3β-hydroxysteroid dehydrogenase 1 promotes resistance to radiotherapy in prostate cancer.
    Ganguly S; Lone Z; Muskara A; Imamura J; Hardaway A; Patel M; Berk M; Smile TD; Davicioni E; Stephans KL; Ciezki J; Weight CJ; Gupta S; Reddy CA; Tendulkar RD; Chakraborty AA; Klein EA; Sharifi N; Mian OY
    J Clin Invest; 2023 Nov; 133(22):. PubMed ID: 37966114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cancer-associated fibroblast-secreted glucosamine alters the androgen biosynthesis program in prostate cancer via HSD3B1 upregulation.
    Cui D; Li J; Zhu Z; Berk M; Hardaway A; McManus J; Chung YM; Alyamani M; Valle S; Tiwari R; Han B; Goudarzi M; Willard B; Sharifi N
    J Clin Invest; 2023 Apr; 133(7):. PubMed ID: 37009898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AR Signaling in Prostate Cancer Regulates a Feed-Forward Mechanism of Androgen Synthesis by Way of HSD3B1 Upregulation.
    Hettel D; Zhang A; Alyamani M; Berk M; Sharifi N
    Endocrinology; 2018 Aug; 159(8):2884-2890. PubMed ID: 29850791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A gain-of-function mutation in DHT synthesis in castration-resistant prostate cancer.
    Chang KH; Li R; Kuri B; Lotan Y; Roehrborn CG; Liu J; Vessella R; Nelson PS; Kapur P; Guo X; Mirzaei H; Auchus RJ; Sharifi N
    Cell; 2013 Aug; 154(5):1074-1084. PubMed ID: 23993097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abiraterone inhibits 3β-hydroxysteroid dehydrogenase: a rationale for increasing drug exposure in castration-resistant prostate cancer.
    Li R; Evaul K; Sharma KK; Chang KH; Yoshimoto J; Liu J; Auchus RJ; Sharifi N
    Clin Cancer Res; 2012 Jul; 18(13):3571-9. PubMed ID: 22753664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prospective role of 3βHSD1 in prostate cancer precision medicine.
    Zhuang Q; Huang S; Li Z
    Prostate; 2023 May; 83(7):619-627. PubMed ID: 36842160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abiraterone switches castration-resistant prostate cancer dependency from adrenal androgens towards androgen receptor variants and glucocorticoid receptor signalling.
    Moll JM; Hofland J; Teubel WJ; de Ridder CMA; Taylor AE; Graeser R; Arlt W; Jenster GW; van Weerden WM
    Prostate; 2022 Apr; 82(5):505-516. PubMed ID: 35037287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Approaches to assessing 3β-hydroxysteroid dehydrogenase-1.
    Alyamani M; McManus J; Patel M; Sharifi N
    Methods Enzymol; 2023; 689():89-119. PubMed ID: 37802584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New agents and strategies for the hormonal treatment of castration-resistant prostate cancer.
    Sharifi N
    Expert Opin Investig Drugs; 2010 Jul; 19(7):837-46. PubMed ID: 20524793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A phosphorylation switch controls androgen biosynthesis in prostate cancer.
    Qiu Y
    J Clin Invest; 2023 Jan; 133(2):. PubMed ID: 36647834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Androgen receptors in hormone-dependent and castration-resistant prostate cancer.
    Shafi AA; Yen AE; Weigel NL
    Pharmacol Ther; 2013 Dec; 140(3):223-38. PubMed ID: 23859952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Through the Looking-Glass: Reevaluating DHEA Metabolism Through HSD3B1 Genetics.
    Naelitz BD; Sharifi N
    Trends Endocrinol Metab; 2020 Sep; 31(9):680-690. PubMed ID: 32565196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antiandrogenic Effects of a Polyphenol in
    Kudo Y; Endo S; Tanio M; Saka T; Himura R; Abe N; Takeda M; Yamaguchi E; Yoshino Y; Arai Y; Kashiwagi H; Oyama M; Itoh A; Shiota M; Fujimoto N; Ikari A
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconsideration of progression to CRPC during androgen deprivation therapy.
    Mizokami A; Namiki M
    J Steroid Biochem Mol Biol; 2015 Jan; 145():164-71. PubMed ID: 24717975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3beta-hydroxysteroid dehydrogenase is a possible pharmacological target in the treatment of castration-resistant prostate cancer.
    Evaul K; Li R; Papari-Zareei M; Auchus RJ; Sharifi N
    Endocrinology; 2010 Aug; 151(8):3514-20. PubMed ID: 20534728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting the androgen receptor signaling pathway in advanced prostate cancer.
    Chung C; Abboud K
    Am J Health Syst Pharm; 2022 Jul; 79(15):1224-1235. PubMed ID: 35390118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lineage plasticity and treatment resistance in prostate cancer: the intersection of genetics, epigenetics, and evolution.
    Imamura J; Ganguly S; Muskara A; Liao RS; Nguyen JK; Weight C; Wee CE; Gupta S; Mian OY
    Front Endocrinol (Lausanne); 2023; 14():1191311. PubMed ID: 37455903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.