BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 38181944)

  • 1. Statuses, shortcomings, and outlooks in studying the fate of nanoplastics and engineered nanoparticles in porous media respectively and borrowable sections from engineered nanoparticles for nanoplastics.
    Zhang M; Hou J; Xia J; Wu J; You G; Miao L
    Sci Total Environ; 2024 Mar; 915():169638. PubMed ID: 38181944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Review of key factors controlling engineered nanoparticle transport in porous media.
    Wang M; Gao B; Tang D
    J Hazard Mater; 2016 Nov; 318():233-246. PubMed ID: 27427890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of nanoparticles in porous media and its effects on the co-existing pollutants.
    Ling X; Yan Z; Liu Y; Lu G
    Environ Pollut; 2021 Aug; 283():117098. PubMed ID: 33857878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuum-based models and concepts for the transport of nanoparticles in saturated porous media: A state-of-the-science review.
    Babakhani P; Bridge J; Doong RA; Phenrat T
    Adv Colloid Interface Sci; 2017 Aug; 246():75-104. PubMed ID: 28641812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of polystyrene nanoplastics in porous media: Combined effects of two co-existing substances.
    Zhang M; Hou J; Xia J; Wu J; Zeng Y; Miao L; Lv B
    Sci Total Environ; 2023 Nov; 897():165275. PubMed ID: 37406707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of natural organic matters on fate of polystyrene nanoplastics in porous media.
    Zhang M; Hou J; Xia J; Zeng Y; Miao L
    Sci Total Environ; 2023 Oct; 893():164504. PubMed ID: 37257602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of input concentration, media particle size, and flow rate on fate of polystyrene nanoplastics in saturated porous media.
    Zhang M; Hou J; Wu J; Miao L; Zeng Y
    Sci Total Environ; 2023 Jul; 881():163237. PubMed ID: 37019228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport and retention of polymeric and other engineered nanoparticles in porous media.
    Xin X; Judy JD; Zhao F; Goodrich SL; Sumerlin BS; Stoffella PJ; He Z
    NanoImpact; 2021 Oct; 24():100361. PubMed ID: 35559820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cotransport of hydroxyapatite nanoparticles and hematite colloids in saturated porous media: Mechanistic insights from mathematical modeling and phosphate oxygen isotope fractionation.
    Wang D; Jin Y; Jaisi DP
    J Contam Hydrol; 2015 Nov; 182():194-209. PubMed ID: 26409895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of environmental fate models for engineered nanoparticles--a case study of TiO2 nanoparticles in the Rhine River.
    Praetorius A; Scheringer M; Hungerbühler K
    Environ Sci Technol; 2012 Jun; 46(12):6705-13. PubMed ID: 22502632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined effects of bacteria and antibiotics on surface properties and transport of nanoplastics in porous media.
    Zhang M; Hou J; Xia J; Wu J; Miao L; Lv B; Ji D
    Sci Total Environ; 2023 Dec; 903():166485. PubMed ID: 37611715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The long-term release and particle fracture behaviors of nanoplastics retained in porous media: Effects of surfactants, natural organic matters, antibiotics, and bacteria.
    Zhang M; Hou J; Xia J; Wu J; You G; Miao L
    Sci Total Environ; 2024 May; 925():171563. PubMed ID: 38460706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vulnerability of drinking water supplies to engineered nanoparticles.
    Troester M; Brauch HJ; Hofmann T
    Water Res; 2016 Jun; 96():255-79. PubMed ID: 27060529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrophobicity of biofilm coatings influences the transport dynamics of polystyrene nanoparticles in biofilm-coated sand.
    Mitzel MR; Sand S; Whalen JK; Tufenkji N
    Water Res; 2016 Apr; 92():113-20. PubMed ID: 26845456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microplastics/nanoplastics in porous media: Key factors controlling their transport and retention behaviors.
    Li F; Huang D; Wang G; Cheng M; Chen H; Zhou W; Xiao R; Li R; Du L; Xu W
    Sci Total Environ; 2024 May; 926():171658. PubMed ID: 38490411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deposition of engineered nanoparticles (ENPs) on surfaces in aquatic systems: a review of interaction forces, experimental approaches, and influencing factors.
    Ma C; Huangfu X; He Q; Ma J; Huang R
    Environ Sci Pollut Res Int; 2018 Nov; 25(33):33056-33081. PubMed ID: 30267342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport and retention of carbon dots (CDs) in saturated and unsaturated porous media: Role of ionic strength, pH, and collector grain size.
    Kamrani S; Rezaei M; Kord M; Baalousha M
    Water Res; 2018 Apr; 133():338-347. PubMed ID: 28864305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fates of Au, Ag, ZnO, and CeO
    He X; Zhang H; Shi H; Liu W; Sahle-Demessie E
    J Am Soc Mass Spectrom; 2020 Oct; 31(10):2180-2190. PubMed ID: 32881526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport and retention of surfactant- and polymer-stabilized engineered silver nanoparticles in silicate-dominated aquifer material.
    Adrian YF; Schneidewind U; Bradford SA; Simunek J; Fernandez-Steeger TM; Azzam R
    Environ Pollut; 2018 May; 236():195-207. PubMed ID: 29414340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein corona-mediated transport of nanoplastics in seawater-saturated porous media.
    Dong Z; Hou Y; Han W; Liu M; Wang J; Qiu Y
    Water Res; 2020 Sep; 182():115978. PubMed ID: 32622130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.