BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 38181944)

  • 21. Transport and retention of copper oxide nanoparticles under unfavorable deposition conditions caused by repulsive van der Waals force in saturated porous media.
    Wu H; Fang H; Xu C; Ye J; Cai Q; Shi J
    Environ Pollut; 2020 Jan; 256():113400. PubMed ID: 31662262
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of Phosphate, Sulfate, Arsenate, and Pyrite on Surface Transformations and Chemical Retention of Gold Nanoparticles (Au-NPs) in Partially Saturated Soil Columns.
    Yecheskel Y; Dror I; Berkowitz B
    Environ Sci Technol; 2019 Nov; 53(22):13071-13080. PubMed ID: 31618570
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transport of engineered nanoparticles in partially saturated sand columns.
    Yecheskel Y; Dror I; Berkowitz B
    J Hazard Mater; 2016 Jul; 311():254-62. PubMed ID: 26995325
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulatory ecotoxicity testing of engineered nanoparticles: are the results relevant to the natural environment?
    Park S; Woodhall J; Ma G; Veinot JG; Cresser MS; Boxall AB
    Nanotoxicology; 2014 Aug; 8(5):583-92. PubMed ID: 23789836
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Key factors controlling transport of micro- and nanoplastic in porous media and its effect on coexisting pollutants.
    Zhou D; Cai Y; Yang Z
    Environ Pollut; 2022 Jan; 293():118503. PubMed ID: 34785290
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Release, transport and toxicity of engineered nanoparticles.
    Soni D; Naoghare PK; Saravanadevi S; Pandey RA
    Rev Environ Contam Toxicol; 2015; 234():1-47. PubMed ID: 25385512
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The interaction mechanisms of co-existing polybrominated diphenyl ethers and engineered nanoparticles in environmental waters: A critical review.
    Khan AUH; Naidu R; Dharmarajan R; Fang C; Shon H; Dong Z; Liu Y
    J Environ Sci (China); 2023 Feb; 124():227-252. PubMed ID: 36182134
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transport and targeted binding of Pluronic-coated nanoparticles in unsaturated porous media.
    Jaberi N; Linley S; Thomson NR; McVey K; Sra K; Gu FX
    J Contam Hydrol; 2022 Aug; 249():104046. PubMed ID: 35785549
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Toxic effects and mechanisms of engineered nanoparticles and nanoplastics on lettuce (Lactuca sativa L.).
    Li Y; Lin X; Xu G; Yan Q; Yu Y
    Sci Total Environ; 2024 Jan; 908():168421. PubMed ID: 37951267
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanoparticles in the environment: stability and toxicity.
    Kim HA; Choi YJ; Kim KW; Lee BT; Ranville JF
    Rev Environ Health; 2012 Sep; 27(4):175-9. PubMed ID: 22962197
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hyperexponential and nonmonotonic retention of polyvinylpyrrolidone-coated silver nanoparticles in an Ultisol.
    Wang D; Ge L; He J; Zhang W; Jaisi DP; Zhou D
    J Contam Hydrol; 2014 Aug; 164():35-48. PubMed ID: 24926609
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transport of citrate and polymer coated gold nanoparticles (AuNPs) in porous media: Effect of surface property and Darcy velocity.
    Wen C; Broholm MM; Dong J; Uthuppu B; Jakobsen MH; Fjordbøge AS
    J Environ Sci (China); 2020 Jun; 92():235-244. PubMed ID: 32430126
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transformation pathways and fate of engineered nanoparticles (ENPs) in distinct interactive environmental compartments: A review.
    Abbas Q; Yousaf B; Amina ; Ali MU; Munir MAM; El-Naggar A; Rinklebe J; Naushad M
    Environ Int; 2020 May; 138():105646. PubMed ID: 32179325
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The mechanisms and environmental implications of engineered nanoparticles dispersion.
    Zhang D; Qiu J; Shi L; Liu Y; Pan B; Xing B
    Sci Total Environ; 2020 Jun; 722():137781. PubMed ID: 32199363
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of selected functional groups on nanoplastics transport in saturated media under diethylhexyl phthalate co-contamination conditions.
    Yasir AM; Ma J; Ouyang X; Zhao J; Zhao Y; Weng L; Islam MS; Chen Y; Li Y
    Chemosphere; 2022 Jan; 286(Pt 3):131965. PubMed ID: 34449324
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mobility of solid and porous hollow SiO
    Bueno V; Bosi A; Tosco T; Ghoshal S
    J Colloid Interface Sci; 2022 Jan; 606(Pt 1):480-490. PubMed ID: 34399364
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Visualization and analysis of nanoparticle transport and ageing in reactive porous media.
    Naftaly A; Edery Y; Dror I; Berkowitz B
    J Hazard Mater; 2015 Dec; 299():513-9. PubMed ID: 26252995
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Freeze-thaw cycles promote vertical migration of metal oxide nanoparticles in soils.
    Xu G; Zheng Q; Yang X; Yu R; Yu Y
    Sci Total Environ; 2021 Nov; 795():148894. PubMed ID: 34252772
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fate assessment of engineered nanoparticles in solids dominated media - Current insights and the way forward.
    Peijnenburg W; Praetorius A; Scott-Fordsmand J; Cornelis G
    Environ Pollut; 2016 Nov; 218():1365-1369. PubMed ID: 26794339
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Experimental measurements and numerical simulations of the transport and retention of nanocrystal CdSe/ZnS quantum dots in saturated porous media: effects of pH, organic ligand, and natural organic matter.
    Li C; Hassan A; Palmai M; Xie Y; Snee PT; Powell BA; Murdoch LC; Darnault CJG
    Environ Sci Pollut Res Int; 2021 Feb; 28(7):8050-8073. PubMed ID: 33051847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.