BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38182544)

  • 1. Automatic generation of functional peptides with desired bioactivity and membrane permeability using Bayesian optimization.
    Fukunaga I; Matsukiyo Y; Kaitoh K; Yamanishi Y
    Mol Inform; 2024 Apr; 43(4):e202300148. PubMed ID: 38182544
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Matsukiyo Y; Yamanaka C; Yamanishi Y
    J Chem Inf Model; 2024 Apr; 64(7):2345-2355. PubMed ID: 37768595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning assisted design of highly active peptides for drug discovery.
    Giguère S; Laviolette F; Marchand M; Tremblay D; Moineau S; Liang X; Biron É; Corbeil J
    PLoS Comput Biol; 2015 Apr; 11(4):e1004074. PubMed ID: 25849257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attractors in Sequence Space: Agent-Based Exploration of MHC I Binding Peptides.
    Jäger N; Wisniewska JM; Hiss JA; Freier A; Losch FO; Walden P; Wrede P; Schneider G
    Mol Inform; 2010 Jan; 29(1-2):65-74. PubMed ID: 27463849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Computational Framework for Target-Specific Active Peptide Discovery: A Case Study on IL-17C Targeting Cyclic Peptides.
    Wu Z; Wu Y; Zhu C; Wu X; Zhai S; Wang X; Su Z; Duan H
    J Chem Inf Model; 2023 Dec; 63(24):7655-7668. PubMed ID: 38049371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constrained Bayesian optimization for automatic chemical design using variational autoencoders.
    Griffiths RR; Hernández-Lobato JM
    Chem Sci; 2020 Jan; 11(2):577-586. PubMed ID: 32190274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptide-to-Small Molecule: A Pharmacophore-Guided Small Molecule Lead Generation Strategy from High-Affinity Macrocyclic Peptides.
    Yoshida S; Uehara S; Kondo N; Takahashi Y; Yamamoto S; Kameda A; Kawagoe S; Inoue N; Yamada M; Yoshimura N; Tachibana Y
    J Med Chem; 2022 Aug; 65(15):10655-10673. PubMed ID: 35904556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerating the discovery of anticancer peptides targeting lung and breast cancers with the Wasserstein autoencoder model and PSO algorithm.
    Yang L; Yang G; Bing Z; Tian Y; Huang L; Niu Y; Yang L
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35945135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variational Autoencoder for Generation of Antimicrobial Peptides.
    Dean SN; Walper SA
    ACS Omega; 2020 Aug; 5(33):20746-20754. PubMed ID: 32875208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CycPeptMPDB: A Comprehensive Database of Membrane Permeability of Cyclic Peptides.
    Li J; Yanagisawa K; Sugita M; Fujie T; Ohue M; Akiyama Y
    J Chem Inf Model; 2023 Apr; 63(7):2240-2250. PubMed ID: 36930969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding and predicting binding between human leukocyte antigens (HLAs) and peptides by network analysis.
    Luo H; Ye H; Ng H; Shi L; Tong W; Mattes W; Mendrick D; Hong H
    BMC Bioinformatics; 2015; 16 Suppl 13(Suppl 13):S9. PubMed ID: 26424483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TRIOMPHE: Transcriptome-Based Inference and Generation of Molecules with Desired Phenotypes by Machine Learning.
    Kaitoh K; Yamanishi Y
    J Chem Inf Model; 2021 Sep; 61(9):4303-4320. PubMed ID: 34528432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of Membrane Active Peptides Considering Multi-Objective Optimization for Biomedical Application.
    Röckendorf N; Nehls C; Gutsmann T
    Membranes (Basel); 2022 Feb; 12(2):. PubMed ID: 35207101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiquery Similarity Searching Models: An Alternative Approach for Predicting Hemolytic Activity from Peptide Sequence.
    Castillo-Mendieta K; Agüero-Chapin G; Marquez E; Perez-Castillo Y; Barigye SJ; Pérez-Cárdenas M; Peréz-Giménez F; Marrero-Ponce Y
    Chem Res Toxicol; 2024 Apr; 37(4):580-589. PubMed ID: 38501392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incorporation of Putative Helix-Breaking Amino Acids in the Design of Novel Stapled Peptides: Exploring Biophysical and Cellular Permeability Properties.
    Partridge AW; Kaan HYK; Juang YC; Sadruddin A; Lim S; Brown CJ; Ng S; Thean D; Ferrer F; Johannes C; Yuen TY; Kannan S; Aronica P; Tan YS; Pradhan MR; Verma CS; Hochman J; Chen S; Wan H; Ha S; Sherborne B; Lane DP; Sawyer TK
    Molecules; 2019 Jun; 24(12):. PubMed ID: 31226791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational and experimental analysis of bioactive peptide linear motifs in the integrin adhesome.
    O'Brien KT; Golla K; Kranjc T; O'Donovan D; Allen S; Maguire P; Simpson JC; O'Connell D; Moran N; Shields DC
    PLoS One; 2019; 14(1):e0210337. PubMed ID: 30689642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tumor cell type and gene marker identification by single layer perceptron neural network on single-cell RNA sequence data.
    Senapati B; DAS R
    J Biosci; 2024; 49():. PubMed ID: 38525885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A dual autoencoder and singular value decomposition based feature optimization for the segmentation of brain tumor from MRI images.
    Aswani K; Menaka D
    BMC Med Imaging; 2021 May; 21(1):82. PubMed ID: 33985449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geometrically Diverse Lariat Peptide Scaffolds Reveal an Untapped Chemical Space of High Membrane Permeability.
    Kelly CN; Townsend CE; Jain AN; Naylor MR; Pye CR; Schwochert J; Lokey RS
    J Am Chem Soc; 2021 Jan; 143(2):705-714. PubMed ID: 33381960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bayesian Optimization in the Latent Space of a Variational Autoencoder for the Generation of Selective FLT3 Inhibitors.
    Chandra R; Horne RI; Vendruscolo M
    J Chem Theory Comput; 2024 Jan; 20(1):469-476. PubMed ID: 38112559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.