These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Insight into antibacterial effect of titanium nanotubular surfaces with focus on Staphylococcus aureus and Pseudomonas aeruginosa. Šístková J; Fialová T; Svoboda E; Varmužová K; Uher M; Číhalová K; Přibyl J; Dlouhý A; Pávková Goldbergová M Sci Rep; 2024 Jul; 14(1):17303. PubMed ID: 39068252 [TBL] [Abstract][Full Text] [Related]
9. Antibacterial ability and angiogenic activity of Cu-Ti-O nanotube arrays. Zong M; Bai L; Liu Y; Wang X; Zhang X; Huang X; Hang R; Tang B Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():93-99. PubMed ID: 27987791 [TBL] [Abstract][Full Text] [Related]
10. Tailoring of antibacterial Ag nanostructures on TiO2 nanotube layers by magnetron sputtering. Uhm SH; Song DH; Kwon JS; Lee SB; Han JG; Kim KN J Biomed Mater Res B Appl Biomater; 2014 Apr; 102(3):592-603. PubMed ID: 24123999 [TBL] [Abstract][Full Text] [Related]
11. Size tuning of Ag-decorated TiO₂ nanotube arrays for improved bactericidal capacity of orthopedic implants. Esfandiari N; Simchi A; Bagheri R J Biomed Mater Res A; 2014 Aug; 102(8):2625-35. PubMed ID: 23982977 [TBL] [Abstract][Full Text] [Related]
12. Implanting a Copper Ion into a TiO Chen H; Zhang J; Yang F; Lin T; Zhang J; Cai X; Zhang P; Tan S ACS Biomater Sci Eng; 2022 Apr; 8(4):1464-1475. PubMed ID: 35302342 [TBL] [Abstract][Full Text] [Related]
13. Antibacterial activities of titanium dioxide (TiO Zhang L; Jin Z J Orthop Surg Res; 2024 Feb; 19(1):144. PubMed ID: 38365803 [TBL] [Abstract][Full Text] [Related]
14. Mg/Cu-doped TiO Wang B; Wu Z; Wang S; Wang S; Niu Q; Wu Y; Jia F; Bian A; Xie L; Qiao H; Chang X; Lin H; Zhang H; Huang Y Mater Sci Eng C Mater Biol Appl; 2021 Sep; 128():112322. PubMed ID: 34474873 [TBL] [Abstract][Full Text] [Related]
15. Enhancing antibacterial property of porous titanium surfaces with silver nanoparticles coatings via electron-beam evaporation. Zhang X; Li Y; Luo X; Ding Y J Mater Sci Mater Med; 2022 Jun; 33(7):57. PubMed ID: 35737197 [TBL] [Abstract][Full Text] [Related]
16. Antibacterial Activity in Iodine-coated Implants Under Conditions of Iodine Loss: Study in a Rat Model Plus In Vitro Analysis. Ueoka K; Kabata T; Tokoro M; Kajino Y; Inoue D; Takagi T; Ohmori T; Yoshitani J; Ueno T; Yamamuro Y; Taninaka A; Tsuchiya H Clin Orthop Relat Res; 2021 Jul; 479(7):1613-1623. PubMed ID: 33847603 [TBL] [Abstract][Full Text] [Related]
17. Zeolitic Imidazolate Framework-8 with Encapsulated Naringin Synergistically Improves Antibacterial and Osteogenic Properties of Ti Implants for Osseointegration. Wang L; Dai F; Yang Y; Zhang Z ACS Biomater Sci Eng; 2022 Sep; 8(9):3797-3809. PubMed ID: 35973211 [TBL] [Abstract][Full Text] [Related]
18. Biological properties of nanostructured Ti incorporated with Ca, P and Ag by electrochemical method. Li B; Hao J; Min Y; Xin S; Guo L; He F; Liang C; Wang H; Li H Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():80-6. PubMed ID: 25842111 [TBL] [Abstract][Full Text] [Related]
19. Surface modification of titanium substrates for enhanced osteogenetic and antibacterial properties. Liu P; Hao Y; Zhao Y; Yuan Z; Ding Y; Cai K Colloids Surf B Biointerfaces; 2017 Dec; 160():110-116. PubMed ID: 28918187 [TBL] [Abstract][Full Text] [Related]
20. Improved antibacterial activity and biocompatibility on vancomycin-loaded TiO2 nanotubes: in vivo and in vitro studies. Zhang H; Sun Y; Tian A; Xue XX; Wang L; Alquhali A; Bai X Int J Nanomedicine; 2013; 8():4379-89. PubMed ID: 24403827 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]