BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38182960)

  • 1. Influence of environmental parameters on workers' dust inhalation in underground mines.
    Huang R; Chen W; Tao Y; Yuan S; Geng F; Li S
    Environ Sci Pollut Res Int; 2024 Feb; 31(6):8963-8973. PubMed ID: 38182960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exposure to dust and particle-associated 1-nitropyrene of drivers of diesel-powered equipment in underground mining.
    Scheepers PT; Micka V; Muzyka V; Anzion R; Dahmann D; Poole J; Bos RP
    Ann Occup Hyg; 2003 Jul; 47(5):379-88. PubMed ID: 12855488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NTP Toxicity Study Report on the atmospheric characterization, particle size, chemical composition, and workplace exposure assessment of cellulose insulation (CELLULOSEINS).
    Morgan DL
    Toxic Rep Ser; 2006 Aug; (74):1-62, A1-C2. PubMed ID: 17160106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of occupational exposures to respirable dust in underground coal mines.
    Onder M; Onder S
    Ind Health; 2009 Jan; 47(1):43-9. PubMed ID: 19218756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Respirable coal mine dust at surface mines, United States, 1982-2017.
    Doney BC; Blackley D; Hale JM; Halldin C; Kurth L; Syamlal G; Laney AS
    Am J Ind Med; 2020 Mar; 63(3):232-239. PubMed ID: 31820465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Exposure to silica dust in coal-mining. Analysis based on measurements made by industrial hygiene laboratories in Poland, 2001-2005].
    Mikołajczyk U; Bujak-Pietrek S; Szadkowska-Stańczyk I
    Med Pr; 2010; 61(3):287-97. PubMed ID: 20677428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Equivalency of a personal dust monitor to the current United States coal mine respirable dust sampler.
    Page SJ; Volkwein JC; Vinson RP; Joy GJ; Mischler SE; Tuchman DP; McWilliams LJ
    J Environ Monit; 2008 Jan; 10(1):96-101. PubMed ID: 18175022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High exposure to respirable dust and quartz in a labour-intensive coal mine in Tanzania.
    Mamuya SH; Bråtveit M; Mwaiselage J; Mashalla YJ; Moen BE
    Ann Occup Hyg; 2006 Mar; 50(2):197-204. PubMed ID: 16143714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variability of exposure and estimation of cumulative exposure in a manually operated coal mine.
    Mamuya SH; Bråtveit M; Mwaiselage J; Moen BE
    Ann Occup Hyg; 2006 Oct; 50(7):737-45. PubMed ID: 16777910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The evaluation and quantification of respirable coal and silica dust concentrations: a task-based approach.
    Grové T; Van Dyk T; Franken A; Du Plessis J
    J Occup Environ Hyg; 2014; 11(6):406-14. PubMed ID: 24380473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Occupational Exposure to Respirable Dust, Respirable Crystalline Silica and Diesel Engine Exhaust Emissions in the London Tunnelling Environment.
    Galea KS; Mair C; Alexander C; de Vocht F; van Tongeren M
    Ann Occup Hyg; 2016 Mar; 60(2):263-9. PubMed ID: 26403363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of Korean farmer's exposure level to dust in pig buildings.
    Kim KY; Ko HJ; Kim YS; Kim CN
    Ann Agric Environ Med; 2008; 15(1):51-8. PubMed ID: 18581979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coal mine dust lung disease in miners killed in the Upper Big Branch disaster: a review of lung pathology and contemporary respirable dust levels in underground US coal mines.
    Go LHT; Green FHY; Abraham JL; Churg A; Petsonk EL; Cohen RA
    Occup Environ Med; 2022 May; 79(5):319-325. PubMed ID: 34880046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determining the spatial variability of personal sampler inlet locations.
    Vinson R; Volkwein J; McWilliams L
    J Occup Environ Hyg; 2007 Sep; 4(9):708-14. PubMed ID: 17654226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silica exposure in a mining exploration operation.
    Arrandale VH; Kalenge S; Demers PA
    Arch Environ Occup Health; 2018; 73(6):351-354. PubMed ID: 29283843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of respirable dust exposures in an opencast coal mine.
    Onder M; Yigit E
    Environ Monit Assess; 2009 May; 152(1-4):393-401. PubMed ID: 18592389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Testing a revised inlet for the personal dust monitor.
    Mischler SE; Tuchman DP; Cauda EG; Colinet JF; Rubinstein EN
    J Occup Environ Hyg; 2019 Mar; 16(3):242-249. PubMed ID: 30620243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Occupational exposure to respirable dust from the coal-fired power generation process: sources, concentration, and health risk assessment.
    Tong R; Liu J; Ma X; Yang Y; Shao G; Li J; Shi M
    Arch Environ Occup Health; 2020; 75(5):260-273. PubMed ID: 31210102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Occupational Exposures to Respirable Silica and Dust in Demolition, Crushing, and Chipping Activities.
    Bello A; Mugford C; Murray A; Shepherd S; Woskie SR
    Ann Work Expo Health; 2019 Jan; 63(1):34-44. PubMed ID: 30379992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of Worker Exposure to Occupational Organic Dust in a Hemp Processing Facility.
    Gardner M; Reed S; Davidson M
    Ann Work Expo Health; 2020 Aug; 64(7):745-753. PubMed ID: 32607533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.