These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 38183219)

  • 21. Plant-soil-microbes: A tripartite interaction for nutrient acquisition and better plant growth for sustainable agricultural practices.
    Das PP; Singh KR; Nagpure G; Mansoori A; Singh RP; Ghazi IA; Kumar A; Singh J
    Environ Res; 2022 Nov; 214(Pt 1):113821. PubMed ID: 35810815
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cover crop root exudates impact soil microbiome functional trajectories in agricultural soils.
    Seitz VA; McGivern BB; Borton MA; Chaparro JM; Schipanski ME; Prenni JE; Wrighton KC
    Microbiome; 2024 Sep; 12(1):183. PubMed ID: 39342284
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nexus on climate change: agriculture and possible solution to cope future climate change stresses.
    Shahzad A; Ullah S; Dar AA; Sardar MF; Mehmood T; Tufail MA; Shakoor A; Haris M
    Environ Sci Pollut Res Int; 2021 Mar; 28(12):14211-14232. PubMed ID: 33515149
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New approaches to improve crop tolerance to biotic and abiotic stresses.
    González Guzmán M; Cellini F; Fotopoulos V; Balestrini R; Arbona V
    Physiol Plant; 2022 Jan; 174(1):e13547. PubMed ID: 34480798
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microbiome for sustainable agriculture: a review with special reference to the corn production system.
    Jat SL; Suby SB; Parihar CM; Gambhir G; Kumar N; Rakshit S
    Arch Microbiol; 2021 Aug; 203(6):2771-2793. PubMed ID: 33884458
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Trichoderma for climate resilient agriculture.
    Kashyap PL; Rai P; Srivastava AK; Kumar S
    World J Microbiol Biotechnol; 2017 Aug; 33(8):155. PubMed ID: 28695465
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interkingdom signaling in plant-rhizomicrobiome interactions for sustainable agriculture.
    Phour M; Sehrawat A; Sindhu SS; Glick BR
    Microbiol Res; 2020 Dec; 241():126589. PubMed ID: 32927204
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils.
    Rashid MI; Mujawar LH; Shahzad T; Almeelbi T; Ismail IM; Oves M
    Microbiol Res; 2016 Feb; 183():26-41. PubMed ID: 26805616
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Upscaling Arbuscular Mycorrhizal Symbiosis and Related Agroecosystems Services in Smallholder Farming Systems.
    Oruru MB; Njeru EM
    Biomed Res Int; 2016; 2016():4376240. PubMed ID: 26942194
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mitigating climate change and pandemic impacts on global food security: dual sustainable agriculture approach (2S approach).
    Sarker PK; Paul AS; Karmoker D
    Planta; 2023 Oct; 258(6):104. PubMed ID: 37878120
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plant Growth-Promoting Rhizobacteria: Context, Mechanisms of Action, and Roadmap to Commercialization of Biostimulants for Sustainable Agriculture.
    Backer R; Rokem JS; Ilangumaran G; Lamont J; Praslickova D; Ricci E; Subramanian S; Smith DL
    Front Plant Sci; 2018; 9():1473. PubMed ID: 30405652
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Screening microbial inoculants and their interventions for cross-kingdom management of wilt disease of solanaceous crops- a step toward sustainable agriculture.
    Kashyap AS; Manzar N; Meshram S; Sharma PK
    Front Microbiol; 2023; 14():1174532. PubMed ID: 37389335
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Realities and hopes in the application of microbial tools in agriculture.
    Batista BD; Singh BK
    Microb Biotechnol; 2021 Jul; 14(4):1258-1268. PubMed ID: 34156754
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Roles of microbes in supporting sustainable rice production using the system of rice intensification.
    Doni F; Mispan MS; Suhaimi NSM; Ishak N; Uphoff N
    Appl Microbiol Biotechnol; 2019 Jul; 103(13):5131-5142. PubMed ID: 31101941
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Understanding the plant-microbe interactions in environments exposed to abiotic stresses: An overview.
    Fadiji AE; Yadav AN; Santoyo G; Babalola OO
    Microbiol Res; 2023 Jun; 271():127368. PubMed ID: 36965460
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Harnessing microbial interactions with rice: Strategies for abiotic stress alleviation in the face of environmental challenges and climate change.
    Zhao J; Yu X; Zhang C; Hou L; Wu N; Zhang W; Wang Y; Yao B; Delaplace P; Tian J
    Sci Total Environ; 2024 Feb; 912():168847. PubMed ID: 38036127
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Current Scenario and Future Prospects of Endophytic Microbes: Promising Candidates for Abiotic and Biotic Stress Management for Agricultural and Environmental Sustainability.
    Anand U; Pal T; Yadav N; Singh VK; Tripathi V; Choudhary KK; Shukla AK; Sunita K; Kumar A; Bontempi E; Ma Y; Kolton M; Singh AK
    Microb Ecol; 2023 Oct; 86(3):1455-1486. PubMed ID: 36917283
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Unveiling the Wheat Microbiome under Varied Agricultural Field Conditions.
    Jaiswal S; Aneja B; Jagannadham J; Pandey B; Chhokar RS; Gill SC; Ahlawat OP; Kumar A; Angadi UB; Rai A; Tiwari R; Iquebal MA; Kumar D
    Microbiol Spectr; 2022 Dec; 10(6):e0263322. PubMed ID: 36445165
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metal nanoparticles and pesticides under global climate change: Assessing the combined effects of multiple abiotic stressors on soil microbial ecosystems.
    Fernández-Triana I; Rubilar O; Parada J; Fincheira P; Benavides-Mendoza A; Durán P; Fernández-Baldo M; Seabra AB; Tortella GR
    Sci Total Environ; 2024 Sep; 942():173494. PubMed ID: 38810746
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Impacts of Domestication and Agricultural Practices on Legume Nutrient Acquisition Through Symbiosis With Rhizobia and Arbuscular Mycorrhizal Fungi.
    Liu A; Ku YS; Contador CA; Lam HM
    Front Genet; 2020; 11():583954. PubMed ID: 33193716
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.