These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 38183512)
21. Establishment of humanized tumor microenvironment mouse models based on the injection of peripheral blood mononuclear cells and IFN-γ to evaluate the efficacy of PD-L1/PD-1-targeted immunotherapy. Lin X; Zeng T; Lin J; Zhang Q; Cheng H; Fang S; Lin S; Chen Y; Xu Y; Lin J Cancer Biol Ther; 2020; 21(2):130-138. PubMed ID: 31690181 [TBL] [Abstract][Full Text] [Related]
22. Targeting Myeloid-Derived Suppressor Cell, a Promising Strategy to Overcome Resistance to Immune Checkpoint Inhibitors. Hou A; Hou K; Huang Q; Lei Y; Chen W Front Immunol; 2020; 11():783. PubMed ID: 32508809 [TBL] [Abstract][Full Text] [Related]
23. Focus on immune checkpoint PD-1/PD-L1 pathway: New advances of polyphenol phytochemicals in tumor immunotherapy. Liu K; Sun Q; Liu Q; Li H; Zhang W; Sun C Biomed Pharmacother; 2022 Oct; 154():113618. PubMed ID: 36055113 [TBL] [Abstract][Full Text] [Related]
24. Immunotherapy of targeting MDSCs in tumor microenvironment. Sui H; Dongye S; Liu X; Xu X; Wang L; Jin CQ; Yao M; Gong Z; Jiang D; Zhang K; Liu Y; Liu H; Jiang G; Su Y Front Immunol; 2022; 13():990463. PubMed ID: 36131911 [TBL] [Abstract][Full Text] [Related]
25. Osteoclast Immunosuppressive Effects in Multiple Myeloma: Role of Programmed Cell Death Ligand 1. Tai YT; Cho SF; Anderson KC Front Immunol; 2018; 9():1822. PubMed ID: 30147691 [TBL] [Abstract][Full Text] [Related]
26. [Research Advances of Immunotherapy of Exosome PD-L1 in Non-small Cell Lung Cancer]. Wang N; Song X Zhongguo Fei Ai Za Zhi; 2022 Sep; 25(9):689-695. PubMed ID: 36172735 [TBL] [Abstract][Full Text] [Related]
27. Exercise sensitizes PD-1/PD-L1 immunotherapy as a hypoxia modulator in the tumor microenvironment of melanoma. Yan H; Jiang A; Huang Y; Zhang J; Yang W; Zhang W; Liu T Front Immunol; 2023; 14():1265914. PubMed ID: 37876940 [TBL] [Abstract][Full Text] [Related]
28. Nutrient deprivation and hypoxia alter T cell immune checkpoint expression: potential impact for immunotherapy. Davern M; Donlon NE; O'Connell F; Gaughan C; O'Donovan C; McGrath J; Sheppard AD; Hayes C; King R; Temperley H; MacLean M; Bulter C; Bhardwaj A; Moore J; Donohoe C; Ravi N; Conroy MJ; Reynolds JV; Lysaght J J Cancer Res Clin Oncol; 2023 Jul; 149(8):5377-5395. PubMed ID: 36445478 [TBL] [Abstract][Full Text] [Related]
29. Immune checkpoint inhibitors as mediators for immunosuppression by cancer-associated fibroblasts: A comprehensive review. Eskandari-Malayeri F; Rezaei M Front Immunol; 2022; 13():996145. PubMed ID: 36275750 [TBL] [Abstract][Full Text] [Related]
30. Blockade of myeloid-derived suppressor cell function by valproic acid enhanced anti-PD-L1 tumor immunotherapy. Adeshakin AO; Yan D; Zhang M; Wang L; Adeshakin FO; Liu W; Wan X Biochem Biophys Res Commun; 2020 Feb; 522(3):604-611. PubMed ID: 31785814 [TBL] [Abstract][Full Text] [Related]
31. Classification of Tumor Immune Microenvironment According to Programmed Death-Ligand 1 Expression and Immune Infiltration Predicts Response to Immunotherapy Plus Chemotherapy in Advanced Patients With NSCLC. Sun D; Liu J; Zhou H; Shi M; Sun J; Zhao S; Chen G; Zhang Y; Zhou T; Ma Y; Zhao Y; Fang W; Zhao H; Huang Y; Yang Y; Zhang L J Thorac Oncol; 2023 Jul; 18(7):869-881. PubMed ID: 36948245 [TBL] [Abstract][Full Text] [Related]
32. Modulating the tumor immune microenvironment with sunitinib malate supports the rationale for combined treatment with immunotherapy. Li W; Zhan M; Quan YY; Wang H; Hua SN; Li Y; Zhang J; Lu L; Cui M Int Immunopharmacol; 2020 Apr; 81():106227. PubMed ID: 32078941 [TBL] [Abstract][Full Text] [Related]
33. CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice. Chen Y; Ramjiawan RR; Reiberger T; Ng MR; Hato T; Huang Y; Ochiai H; Kitahara S; Unan EC; Reddy TP; Fan C; Huang P; Bardeesy N; Zhu AX; Jain RK; Duda DG Hepatology; 2015 May; 61(5):1591-602. PubMed ID: 25529917 [TBL] [Abstract][Full Text] [Related]
34. Improving Breast Cancer Responses to Immunotherapy-a Search for the Achilles Heel of the Tumor Microenvironment. Jenkins S; Wesolowski R; Gatti-Mays ME Curr Oncol Rep; 2021 Mar; 23(5):55. PubMed ID: 33755828 [TBL] [Abstract][Full Text] [Related]
35. The Progress of Immunotherapy in Refractory Pituitary Adenomas and Pituitary Carcinomas. Dai C; Liang S; Sun B; Kang J Front Endocrinol (Lausanne); 2020; 11():608422. PubMed ID: 33362722 [TBL] [Abstract][Full Text] [Related]
36. Hypoxia-modulatory nanomaterials to relieve tumor hypoxic microenvironment and enhance immunotherapy: Where do we stand? Yuan CS; Deng ZW; Qin D; Mu YZ; Chen XG; Liu Y Acta Biomater; 2021 Apr; 125():1-28. PubMed ID: 33639310 [TBL] [Abstract][Full Text] [Related]
37. Stratification of ovarian tumor pathology by expression of programmed cell death-1 (PD-1) and PD-ligand- 1 (PD-L1) in ovarian cancer. Drakes ML; Mehrotra S; Aldulescu M; Potkul RK; Liu Y; Grisoli A; Joyce C; O'Brien TE; Stack MS; Stiff PJ J Ovarian Res; 2018 May; 11(1):43. PubMed ID: 29843813 [TBL] [Abstract][Full Text] [Related]
38. Myeloid-derived suppressor cells in cancer immunotherapy-clinical perspectives. Mortezaee K Life Sci; 2021 Jul; 277():119627. PubMed ID: 34004256 [TBL] [Abstract][Full Text] [Related]
39. PD-1 Signaling Promotes Tumor-Infiltrating Myeloid-Derived Suppressor Cells and Gastric Tumorigenesis in Mice. Kim W; Chu TH; Nienhüser H; Jiang Z; Del Portillo A; Remotti HE; White RA; Hayakawa Y; Tomita H; Fox JG; Drake CG; Wang TC Gastroenterology; 2021 Feb; 160(3):781-796. PubMed ID: 33129844 [TBL] [Abstract][Full Text] [Related]
40. Target delivery of a PD-1-TREM2 scFv by CAR-T cells enhances anti-tumor efficacy in colorectal cancer. Chen J; Zhu T; Jiang G; Zeng Q; Li Z; Huang X Mol Cancer; 2023 Aug; 22(1):131. PubMed ID: 37563723 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]