BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38183757)

  • 1. Surface breaking crack sizing method using pulse-echo Rayleigh waves.
    Verma B; Bélanger P
    Ultrasonics; 2024 Mar; 138():107232. PubMed ID: 38183757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An alternative Rayleigh wave excitation method using an ultrasonic phased array.
    Verma B; Bélanger P
    Ultrasonics; 2023 Dec; 135():107121. PubMed ID: 37572395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface Crack Monitoring by Rayleigh Waves with a Piezoelectric-Polymer-Film Ultrasonic Transducer Array.
    Li X; Wong VK; Yousry YM; Lim DBK; Christopher Subhodayam PT; Yao K; Feng L; Qian X; Fan Z
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of three-dimensional surface-breaking slots based on regression analysis of ultrasonic Rayleigh wave simulations.
    Zhang S; Fan Z
    Ultrasonics; 2024 Mar; 138():107261. PubMed ID: 38350313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasonic sizing of short surface cracks.
    Masserey B; Mazza E
    Ultrasonics; 2007 Jun; 46(3):195-204. PubMed ID: 17367834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Image-based sizing of surface-breaking cracks by SH-wave array ultrasonic testing.
    Kimoto K; Ueno S; Hirose S
    Ultrasonics; 2006 Dec; 45(1-4):152-64. PubMed ID: 17005228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phased Electromagnetic Acoustic Transducer Array for Rayleigh Wave Surface Defect Detection.
    Xiang L; Greenshields D; Dixon S; Edwards RS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Jul; 67(7):1403-1411. PubMed ID: 31976888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasonic surface crack characterization on complex geometries using surface waves.
    Masserey B; Aebi L; Mazza E
    Ultrasonics; 2006 Dec; 44 Suppl 1():e957-61. PubMed ID: 16797633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Selectivity imaging of the closed fatigue crack due to thermal environment using surface-acoustic-wave phased array (SAW PA).
    Ohara Y; Oshiumi T; Wu X; Uchimoto T; Takagi T; Tsuji T; Mihara T
    Ultrasonics; 2022 Feb; 119():106629. PubMed ID: 34700266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-destructive evaluation of depth of surface cracks using ultrasonic frequency analysis.
    Her SC; Lin ST
    Sensors (Basel); 2014 Sep; 14(9):17146-58. PubMed ID: 25225875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of Reinforced Concrete Surface Breaking Crack Using Rayleigh Wave Measurement.
    Lee FW; Chai HK; Lim KS
    Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 26959028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pulsed Rayleigh wave scattered at a surface crack.
    Jian X; Dixon S; Guo N; Edwards RS; Potter M
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1131-4. PubMed ID: 16797641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Depth gauging of defects using low frequency wideband Rayleigh waves.
    Edwards RS; Dixon S; Jian X
    Ultrasonics; 2006 Jan; 44(1):93-8. PubMed ID: 16246389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element analysis of Rayleigh wave interaction with finite-size, surface-breaking cracks.
    Hassan W; Veronesi W
    Ultrasonics; 2003 Jan; 41(1):41-52. PubMed ID: 12464411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Approach to Size Sub-Wavelength Surface Crack Measurements Using Rayleigh Waves Based on Laser Ultrasounds.
    Li H; Pan Q; Zhang X; An Z
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32906754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Sensitive Frequency Range Method Based on Laser Ultrasounds for Micro-Crack Depth Determination.
    Li H; Jiang W; Deng J; Yu R; Pan Q
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fatigue Crack Length Sizing Using a Novel Flexible Eddy Current Sensor Array.
    Xie R; Chen D; Pan M; Tian W; Wu X; Zhou W; Tang Y
    Sensors (Basel); 2015 Dec; 15(12):32138-51. PubMed ID: 26703608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasonic inspection of studs (bolts) using dynamic predictive deconvolution and wave shaping.
    Suh DM; Kim WW; Chung JG
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(2):457-63. PubMed ID: 18238443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D ultrasonic imaging of surface-breaking cracks using a linear array.
    Saini A; Lane CJL; Tu J; Xue H; Fan Z
    Ultrasonics; 2022 Sep; 125():106790. PubMed ID: 35835009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of the Acoustic Non-Linearity Parameter of Materials by Exciting Reversed-Phase Rayleigh Waves in Opposite Directions.
    Yan B; Song Y; Nie S; Yang M; Liu Z
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32244379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.