BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38184209)

  • 1. Maximum likelihood estimation and natural pairwise estimating equations are identical for three sequences and a symmetric 2-state substitution model.
    Hobolth A; Wiuf C
    Theor Popul Biol; 2024 Apr; 156():1-4. PubMed ID: 38184209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating phylogenetic trees from pairwise likelihoods and posterior probabilities of substitution counts.
    Holder MT; Steel M
    J Theor Biol; 2011 Jul; 280(1):159-66. PubMed ID: 21540039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upper bounds on maximum likelihood for phylogenetic trees.
    Hendy MD; Holland BR
    Bioinformatics; 2003 Oct; 19 Suppl 2():ii66-72. PubMed ID: 14534174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylogenetic analysis using parsimony and likelihood methods.
    Yang Z
    J Mol Evol; 1996 Feb; 42(2):294-307. PubMed ID: 8919881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian and maximum likelihood phylogenetic analyses of protein sequence data under relative branch-length differences and model violation.
    Mar JC; Harlow TJ; Ragan MA
    BMC Evol Biol; 2005 Jan; 5():8. PubMed ID: 15676079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complexity of the simplest phylogenetic estimation problem.
    Yang Z
    Proc Biol Sci; 2000 Jan; 267(1439):109-16. PubMed ID: 10687814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maximum likelihood estimates of species trees: how accuracy of phylogenetic inference depends upon the divergence history and sampling design.
    McCormack JE; Huang H; Knowles LL
    Syst Biol; 2009 Oct; 58(5):501-8. PubMed ID: 20525604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quartet-mapping, a generalization of the likelihood-mapping procedure.
    Nieselt-Struwe K; von Haeseler A
    Mol Biol Evol; 2001 Jul; 18(7):1204-19. PubMed ID: 11420361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring among-site rate variation models in a maximum likelihood framework using empirical data: effects of model assumptions on estimates of topology, branch lengths, and bootstrap support.
    Buckley TR; Simon C; Chambers GK
    Syst Biol; 2001 Feb; 50(1):67-86. PubMed ID: 12116595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substitution model of sequence evolution for the human immunodeficiency virus type 1 subtype B gp120 gene over the C2-V5 region.
    Anderson JP; Rodrigo AG; Learn GH; Wang Y; Weinstock H; Kalish ML; Robbins KE; Hood L; Mullins JI
    J Mol Evol; 2001 Jul; 53(1):55-62. PubMed ID: 11683323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of models for nucleotide substitution used in maximum-likelihood phylogenetic estimation.
    Yang Z; Goldman N; Friday A
    Mol Biol Evol; 1994 Mar; 11(2):316-24. PubMed ID: 8170371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular clock fork phylogenies: closed form analytic maximum likelihood solutions.
    Chor B; Snir S
    Syst Biol; 2004 Dec; 53(6):963-7. PubMed ID: 15764563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Data-specific substitution models improve protein-based phylogenetics.
    Brazão JM; Foster PG; Cox CJ
    PeerJ; 2023; 11():e15716. PubMed ID: 37576497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relative efficiencies of the maximum-likelihood, neighbor-joining, and maximum-parsimony methods when substitution rate varies with site.
    Tateno Y; Takezaki N; Nei M
    Mol Biol Evol; 1994 Mar; 11(2):261-77. PubMed ID: 8170367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bayesian coestimation of phylogeny and sequence alignment.
    Lunter G; Miklós I; Drummond A; Jensen JL; Hein J
    BMC Bioinformatics; 2005 Apr; 6():83. PubMed ID: 15804354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of evolutionary parameters with phylogenetic trees.
    Wang Q; Salter LA; Pearl DK
    J Mol Evol; 2002 Dec; 55(6):684-95. PubMed ID: 12486527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maximum likelihood estimation on large phylogenies and analysis of adaptive evolution in human influenza virus A.
    Yang Z
    J Mol Evol; 2000 Nov; 51(5):423-32. PubMed ID: 11080365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Felsenstein Phylogenetic Likelihood.
    Posada D; Crandall KA
    J Mol Evol; 2021 Apr; 89(3):134-145. PubMed ID: 33438113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Testing for phylogenetic signal in comparative data: behavioral traits are more labile.
    Blomberg SP; Garland T; Ives AR
    Evolution; 2003 Apr; 57(4):717-45. PubMed ID: 12778543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ancestral state reconstruction with large numbers of sequences and edge-length estimation.
    Ho LST; Susko E
    J Math Biol; 2022 Feb; 84(4):21. PubMed ID: 35188616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.