These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38184251)

  • 1. Using machine learning to trace the pollution sources of disinfection by-products precursors compared to receptor models.
    Xiao Y; Ma S; Yang S; He H; He X; Li C; Feng Y; Xu B; Tang Y
    Sci Total Environ; 2024 Mar; 914():169671. PubMed ID: 38184251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of different types of nitrogen sources in water on the formation potentials of nitrogenous disinfection by-products in chloramine disinfection process based on isotope labeling.
    Zhang H; Gao P; Liu Y; Du Z; Feng L; Zhang L
    Sci Total Environ; 2022 Oct; 842():156692. PubMed ID: 35752235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular transformation of dissolved organic matter and the formation of disinfection byproducts in full-scale surface water treatment processes.
    He H; Xu H; Li L; Yang X; Fu Q; Yang X; Zhang W; Wang D
    Sci Total Environ; 2022 Sep; 838(Pt 4):156547. PubMed ID: 35688238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characteristics and disinfection byproducts formation potential of dissolved organic matter released from fast-growing Eucalyptus urophylla leaves.
    Liu L; Tang Y; Yang W; Li W; Fang B; Zhong Y; Yin M; Chen Y; Yang H
    Chemosphere; 2020 Jun; 248():126017. PubMed ID: 32035383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation and occurrence of new polar iodinated disinfection byproducts in drinking water.
    Pan Y; Li W; An H; Cui H; Wang Y
    Chemosphere; 2016 Feb; 144():2312-20. PubMed ID: 26606185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variation of carbonaceous disinfectants by-products precursors and their correlation with molecular characteristics of dissolved organic matter and microbial communities in a raw water distribution system.
    Wang Y; Xu H; Shen Z; Liu C; Ding M; Lin T; Tao H; Chen W
    Chemosphere; 2021 Nov; 283():131180. PubMed ID: 34467942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chlorination of soil-derived dissolved organic matter: Long term nitrogen deposition does not increase terrestrial precursors of toxic disinfection byproducts.
    Li LP; Huang WL; Yang MT; Liu Y; Bowden RD; Simpson MJ; Lajtha K; Tian LQ; Wang JJ
    Water Res; 2020 Oct; 185():116271. PubMed ID: 32784033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of the key biochemical component contributing to disinfection byproducts in chlorinating algogenic organic matter.
    Ma L; Peng F; Dong Q; Li H; Yang Z
    Chemosphere; 2022 Jun; 296():133998. PubMed ID: 35181429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracking and analysis of DBP precursors' properties by fluorescence spectrometry of dissolved organic matter.
    Fan Z; Yang H; Li S; Yu X
    Chemosphere; 2020 Jan; 239():124790. PubMed ID: 31521927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nontargeted identification of chlorinated disinfection byproducts formed from natural organic matter using Orbitrap mass spectrometry and a halogen extraction code.
    Lu Y; Song ZM; Wang C; Liang JK; Hu Q; Wu QY
    J Hazard Mater; 2021 Aug; 416():126198. PubMed ID: 34492962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of algal organic matter as precursors for carbonaceous and nitrogenous disinfection byproducts formation: Comparison with natural organic matter.
    Wang XX; Liu BM; Lu MF; Li YP; Jiang YY; Zhao MX; Huang ZX; Pan Y; Miao HF; Ruan WQ
    J Environ Manage; 2021 Mar; 282():111951. PubMed ID: 33461088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization, DBPs formation, and mutagenicity of different organic matter fractions in two source waters.
    Fan Z; Gong S; Xu X; Zhang X; Zhang Y; Yu X
    Int J Hyg Environ Health; 2014 Mar; 217(2-3):300-6. PubMed ID: 23896129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of dissolved organic matter derived from atmospheric dry deposition and its DBP formation.
    He J; Wang F; Zhao T; Liu S; Chu W
    Water Res; 2020 Mar; 171():115368. PubMed ID: 31841956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct discharge of sewage to natural water through illicitly connected urban stormwater systems: An overlooked source of dissolved organic matter.
    Zhang R; Xiao R; Wang F; Chu W; Hu J; Zhang Y; Jin W; van der Hoek JP; Xu Z
    Sci Total Environ; 2023 Sep; 890():164248. PubMed ID: 37201855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation characteristics of carbonaceous and nitrogenous disinfection by-products depending on residual organic compounds by CGS and DAF.
    Maeng M; Shahi NK; Shin G; Son H; Kwak D; Dockko S
    Environ Sci Pollut Res Int; 2019 Nov; 26(33):34008-34017. PubMed ID: 30209770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating bromide incorporation factor (BIF) and model development for predicting THMs in drinking water using machine learning.
    Chowdhury S; Sattar KA; Rahman SM
    Sci Total Environ; 2024 Jan; 906():167595. PubMed ID: 37802353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of lower Phong river dissolved organic matters and formations of unknown chlorine dioxide and chlorine disinfection by-products by Orbitrap mass spectrometry.
    Prasert T; Ishii Y; Kurisu F; Musikavong C; Phungsai P
    Chemosphere; 2021 Feb; 265():128653. PubMed ID: 33131752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of aromatic precursors in the formation of haloacetamides by chloramination of dissolved organic matter.
    Le Roux J; Nihemaiti M; Croué JP
    Water Res; 2016 Jan; 88():371-379. PubMed ID: 26517788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation kinetics of disinfection byproducts in algal-laden water during chlorination: A new insight into evaluating disinfection formation risk.
    Huang R; Liu Z; Yan B; Zhang J; Liu D; Xu Y; Wang P; Cui F; Liu Z
    Environ Pollut; 2019 Feb; 245():63-70. PubMed ID: 30414550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Derivates variation of phenylalanine as a model disinfection by-product precursor during long term chlorination and chloramination.
    Zhou K; Ye S; Yu Q; Chen J; Yong P; Ma X; Li Q; Dietrich AM
    Sci Total Environ; 2021 Jun; 771():144885. PubMed ID: 33736131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.