These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 38184256)
1. Fulvic acid modified ZnO nanoparticles improve nanoparticle stability, mung bean growth, grain zinc content, and soil biodiversity. Guo J; Fu Q; Tang M; Bai J; Liu R; Zhang H; Siddique KHM; Mao H Sci Total Environ; 2024 Feb; 913():169840. PubMed ID: 38184256 [TBL] [Abstract][Full Text] [Related]
2. Fate of ZnO nanoparticles in soils and cowpea (Vigna unguiculata). Wang P; Menzies NW; Lombi E; McKenna BA; Johannessen B; Glover CJ; Kappen P; Kopittke PM Environ Sci Technol; 2013 Dec; 47(23):13822-30. PubMed ID: 24195448 [TBL] [Abstract][Full Text] [Related]
3. Zinc oxide nanoparticles enhanced rice yield, quality, and zinc content of edible grain fraction synergistically. Mi K; Yuan X; Wang Q; Dun C; Wang R; Yang S; Yang Y; Zhang H; Zhang H Front Plant Sci; 2023; 14():1196201. PubMed ID: 37662145 [TBL] [Abstract][Full Text] [Related]
4. Uptake, transformation, and environmental impact of zinc oxide nanoparticles in a soil-wheat system. Sun H; Guo W; Zhou Q; Gong Y; Lv Z; Wang Q; Mao H; Kopittke PM Sci Total Environ; 2023 Jan; 857(Pt 1):159307. PubMed ID: 36216048 [TBL] [Abstract][Full Text] [Related]
5. Interaction of zinc oxide nanoparticles with soil: Insights into the chemical and biological properties. Verma Y; Singh SK; Jatav HS; Rajput VD; Minkina T Environ Geochem Health; 2022 Jan; 44(1):221-234. PubMed ID: 33864175 [TBL] [Abstract][Full Text] [Related]
6. Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants--A soil microcosm experiment. Wang F; Liu X; Shi Z; Tong R; Adams CA; Shi X Chemosphere; 2016 Mar; 147():88-97. PubMed ID: 26761602 [TBL] [Abstract][Full Text] [Related]
7. Foliar exposure of zinc oxide nanoparticles improved the growth of wheat (Triticum aestivum L.) and decreased cadmium concentration in grains under simultaneous Cd and water deficient stress. Adrees M; Khan ZS; Hafeez M; Rizwan M; Hussain K; Asrar M; Alyemeni MN; Wijaya L; Ali S Ecotoxicol Environ Saf; 2021 Jan; 208():111627. PubMed ID: 33396147 [TBL] [Abstract][Full Text] [Related]
8. Assessment of the risks of copper- and zinc oxide-based nanoparticles used in Vigna radiata L. culture on food quality, human nutrition and health. Karmous I; Tlahig S; Loumerem M; Lachiheb B; Bouhamda T; Mabrouk M; Debouba M; Chaoui A Environ Geochem Health; 2022 Nov; 44(11):4045-4061. PubMed ID: 34850307 [TBL] [Abstract][Full Text] [Related]
9. Effect of ZnO nanoparticles on the productivity, Zn biofortification, and nutritional quality of rice in a life cycle study. Yang G; Yuan H; Ji H; Liu H; Zhang Y; Wang G; Chen L; Guo Z Plant Physiol Biochem; 2021 Jun; 163():87-94. PubMed ID: 33823360 [TBL] [Abstract][Full Text] [Related]
10. Effects of Soil pH and Coatings on the Efficacy of Polymer coated ZnO Nanoparticulate fertilizers in Wheat ( Elhaj Baddar Z; Unrine JM Environ Sci Technol; 2021 Oct; 55(20):13532-13540. PubMed ID: 33999618 [TBL] [Abstract][Full Text] [Related]
11. Study of Zn availability, uptake, and effects on earthworms of zinc oxide nanoparticle versus bulk applied to two agricultural soils: Acidic and calcareous. García-Gómez C; García-Gutiérrez S; Obrador A; Fernández MD Chemosphere; 2020 Jan; 239():124814. PubMed ID: 31527003 [TBL] [Abstract][Full Text] [Related]
12. A comparison between the function of Serendipita indica and Sinorhizobium meliloti in modulating the toxicity of zinc oxide nanoparticles in alfalfa (Medicago sativa L.). Tabande L; Sepehri M; Yasrebi J; Zarei M; Ghasemi-Fasaei R; Khatabi B Environ Sci Pollut Res Int; 2022 Feb; 29(6):8790-8803. PubMed ID: 34490575 [TBL] [Abstract][Full Text] [Related]
13. Effects of nZnS vs. nZnO and ZnCl Thapa M; Sadhukhan R; Mukherjee A; Biswas PK NanoImpact; 2023 Jan; 29():100440. PubMed ID: 36442836 [TBL] [Abstract][Full Text] [Related]
14. Enhancing the Mobilization of Native Phosphorus in the Mung Bean Rhizosphere Using ZnO Nanoparticles Synthesized by Soil Fungi. Raliya R; Tarafdar JC; Biswas P J Agric Food Chem; 2016 Apr; 64(16):3111-8. PubMed ID: 27054413 [TBL] [Abstract][Full Text] [Related]
15. [Biological Effects of ZnO Nanoparticles as Influenced by Arbuscular Mycorrhizal Inoculation and Phosphorus Fertilization]. Jing XX; Su ZZ; Xing HE; Wang FY; Shi ZY; Liu XQ Huan Jing Ke Xue; 2016 Aug; 37(8):3208-3215. PubMed ID: 29964752 [TBL] [Abstract][Full Text] [Related]
16. Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Hussain A; Ali S; Rizwan M; Zia Ur Rehman M; Javed MR; Imran M; Chatha SAS; Nazir R Environ Pollut; 2018 Nov; 242(Pt B):1518-1526. PubMed ID: 30144725 [TBL] [Abstract][Full Text] [Related]
17. Zinc oxide and ferric oxide nanoparticles combination increase plant growth, yield, and quality of soybean under semiarid region. Yadav A; Babu S; Krishnan P; Kaur B; Bana RS; Chakraborty D; Kumar V; Joshi B; Lal SK Chemosphere; 2024 Mar; 352():141432. PubMed ID: 38368965 [TBL] [Abstract][Full Text] [Related]
18. Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. Dimkpa CO; McLean JE; Britt DW; Anderson AJ Biometals; 2013 Dec; 26(6):913-24. PubMed ID: 23933719 [TBL] [Abstract][Full Text] [Related]
19. Zinc oxide nanoparticles alleviate drought-induced alterations in sorghum performance, nutrient acquisition, and grain fortification. Dimkpa CO; Singh U; Bindraban PS; Elmer WH; Gardea-Torresdey JL; White JC Sci Total Environ; 2019 Oct; 688():926-934. PubMed ID: 31726574 [TBL] [Abstract][Full Text] [Related]
20. Nutrient strengthening of winter wheat by foliar ZnO and Fe Lv Z; Zhong M; Zhou Q; Li Z; Sun H; Bai J; Liu J; Mao H Sci Total Environ; 2023 Oct; 893():164866. PubMed ID: 37329906 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]