These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 38184440)

  • 1. Harnessing Pseudomonas putida in bioelectrochemical systems.
    Qi X; Gao X; Wang X; Xu P
    Trends Biotechnol; 2024 Jul; 42(7):877-894. PubMed ID: 38184440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering extracellular electron transfer pathways of electroactive microorganisms by synthetic biology for energy and chemicals production.
    Zhang J; Li F; Liu D; Liu Q; Song H
    Chem Soc Rev; 2024 Feb; 53(3):1375-1446. PubMed ID: 38117181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation of polycyclic aromatic hydrocarbons: Using microbial bioelectrochemical systems to overcome an impasse.
    Kronenberg M; Trably E; Bernet N; Patureau D
    Environ Pollut; 2017 Dec; 231(Pt 1):509-523. PubMed ID: 28841503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-going applications of Shewanella species in microbial electrochemical system for bioenergy, bioremediation and biosensing.
    Zou L; Huang YH; Long ZE; Qiao Y
    World J Microbiol Biotechnol; 2018 Dec; 35(1):9. PubMed ID: 30569420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic engineering for enhanced productivity in bioelectrochemical systems.
    Philipp LA; Edel M; Gescher J
    Adv Appl Microbiol; 2020; 111():1-31. PubMed ID: 32446410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biotechnological Aspects of Microbial Extracellular Electron Transfer.
    Kato S
    Microbes Environ; 2015; 30(2):133-9. PubMed ID: 26004795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional carbon-based anodes promoted the accumulation of exoelectrogens in bioelectrochemical systems.
    Wu Y; He G; Chen S; Wang Z
    Water Environ Res; 2020 Jul; 92(7):997-1005. PubMed ID: 31891435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved performance of Pseudomonas putida in a bioelectrochemical system through overexpression of periplasmic glucose dehydrogenase.
    Yu S; Lai B; Plan MR; Hodson MP; Lestari EA; Song H; Krömer JO
    Biotechnol Bioeng; 2018 Jan; 115(1):145-155. PubMed ID: 28921555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protocol for bioelectrochemical enrichment, cultivation, and characterization of extreme electroactive microorganisms.
    Singh R; Chaudhary S; Yadav S; Patil SA
    STAR Protoc; 2022 Mar; 3(1):101114. PubMed ID: 35118426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactor concepts for bioelectrochemical syntheses and energy conversion.
    Krieg T; Sydow A; Schröder U; Schrader J; Holtmann D
    Trends Biotechnol; 2014 Dec; 32(12):645-55. PubMed ID: 25457389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanisms regulating the catabolic and electrochemical activities of Shewanella oneidensis MR-1.
    Kouzuma A
    Biosci Biotechnol Biochem; 2021 Jun; 85(7):1572-1581. PubMed ID: 33998649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards practical implementation of bioelectrochemical wastewater treatment.
    Rozendal RA; Hamelers HV; Rabaey K; Keller J; Buisman CJ
    Trends Biotechnol; 2008 Aug; 26(8):450-9. PubMed ID: 18585807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transforming exoelectrogens for biotechnology using synthetic biology.
    TerAvest MA; Ajo-Franklin CM
    Biotechnol Bioeng; 2016 Apr; 113(4):687-97. PubMed ID: 26284614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytochrome c Reductase is a Key Enzyme Involved in the Extracellular Electron Transfer Pathway towards Transition Metal Complexes in Pseudomonas Putida.
    Lai B; Bernhardt PV; Krömer JO
    ChemSusChem; 2020 Oct; 13(19):5308-5317. PubMed ID: 32678505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial catalysis in bioelectrochemical technologies: status quo, challenges and perspectives.
    Rosenbaum MA; Franks AE
    Appl Microbiol Biotechnol; 2014 Jan; 98(2):509-18. PubMed ID: 24270896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anoxic metabolism and biochemical production in Pseudomonas putida F1 driven by a bioelectrochemical system.
    Lai B; Yu S; Bernhardt PV; Rabaey K; Virdis B; Krömer JO
    Biotechnol Biofuels; 2016; 9():39. PubMed ID: 26893611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial extracellular electron transfer and strategies for engineering electroactive microorganisms.
    Zhao J; Li F; Cao Y; Zhang X; Chen T; Song H; Wang Z
    Biotechnol Adv; 2021 Dec; 53():107682. PubMed ID: 33326817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamically adaptive control system for bioanodes in serially stacked bioelectrochemical systems.
    Andersen SJ; Pikaar I; Freguia S; Lovell BC; Rabaey K; Rozendal RA
    Environ Sci Technol; 2013 May; 47(10):5488-94. PubMed ID: 23593927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial catalyzed electrochemical systems: a bio-factory with multi-facet applications.
    Venkata Mohan S; Velvizhi G; Vamshi Krishna K; Lenin Babu M
    Bioresour Technol; 2014 Aug; 165():355-64. PubMed ID: 24791713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The diversity of techniques to study electrochemically active biofilms highlights the need for standardization.
    Harnisch F; Rabaey K
    ChemSusChem; 2012 Jun; 5(6):1027-38. PubMed ID: 22615099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.