These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 38184440)

  • 41. [Research progress in screening method of exoelectrogens].
    Chen Y; Zhang B; Wu D; Li F; Song H
    Sheng Wu Gong Cheng Xue Bao; 2020 Dec; 36(12):2719-2731. PubMed ID: 33398967
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bioelectrochemical systems and synthetic biology: more power, more products.
    Glaven SM
    Microb Biotechnol; 2019 Sep; 12(5):819-823. PubMed ID: 31264368
    [No Abstract]   [Full Text] [Related]  

  • 43. Development of an efficient pathway construction strategy for rapid evolution of the biodegradation capacity of Pseudomonas putida KT2440 and its application in bioremediation.
    Zhao Y; Che Y; Zhang F; Wang J; Gao W; Zhang T; Yang C
    Sci Total Environ; 2021 Mar; 761():143239. PubMed ID: 33158512
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metagenomic insights into the ecology and physiology of microbes in bioelectrochemical systems.
    Kouzuma A; Ishii S; Watanabe K
    Bioresour Technol; 2018 May; 255():302-307. PubMed ID: 29426790
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bioelectrochemical degradation of petroleum hydrocarbons: A critical review and future perspectives.
    He Y; Zhou Q; Mo F; Li T; Liu J
    Environ Pollut; 2022 Aug; 306():119344. PubMed ID: 35483484
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mathematical model for evaluation of mass transfer limitations in phenol biodegradation by immobilized Pseudomonas putida.
    Banerjee I; Modak JM; Bandopadhyay K; Das D; Maiti BR
    J Biotechnol; 2001 May; 87(3):211-23. PubMed ID: 11334665
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The critical roles of propanethiol oxidoreductase and sulfide-quinone oxidoreductase in the propanethiol catabolism pathway in
    Qiao P; Ning L; Chen J; Tang Y; Zhao R; Chen G; Ye Q; Zhou T; Chen J; Zhong W
    Appl Environ Microbiol; 2024 Feb; 90(2):e0195923. PubMed ID: 38193681
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Metabolic Redox Regime of Pseudomonas putida Tunes Its Evolvability toward Novel Xenobiotic Substrates.
    Akkaya Ö; Pérez-Pantoja DR; Calles B; Nikel PI; de Lorenzo V
    mBio; 2018 Aug; 9(4):. PubMed ID: 30154264
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Impact of Condition Variations on Bioelectrochemical System Performance: An Experimental Investigation of Sulfamethoxazole Degradation.
    Xue Q; Chen Z; Xie W; Zhang S; Jiang J; Sun G
    Molecules; 2024 May; 29(10):. PubMed ID: 38792137
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Positive effects of bio-nano Pd (0) toward direct electron transfer in Pseudomona putida and phenol biodegradation.
    Niu Z; Jia Y; Chen Y; Hu Y; Chen J; Lv Y
    Ecotoxicol Environ Saf; 2018 Oct; 161():356-363. PubMed ID: 29890437
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modular configurations of living biomaterials incorporating nano-based artificial mediators and synthetic biology to improve bioelectrocatalytic performance: A review.
    Chen Z; Zhang J; Lyu Q; Wang H; Ji X; Yan Z; Chen F; Dahlgren RA; Zhang M
    Sci Total Environ; 2022 Jun; 824():153857. PubMed ID: 35176368
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Exopolysaccharides matrix affects the process of extracellular electron transfer in electroactive biofilm.
    Zhuang Z; Yang G; Zhuang L
    Sci Total Environ; 2022 Feb; 806(Pt 3):150713. PubMed ID: 34606863
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterizing the Anoxic Phenotype of
    Lai B; Nguyen AV; Krömer JO
    Methods Protoc; 2019 Mar; 2(2):. PubMed ID: 31164607
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Carbon Source-Dependent Inducible Metabolism of Veratryl Alcohol and Ferulic Acid in Pseudomonas putida CSV86.
    Mohan K; Phale PS
    Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28188206
    [No Abstract]   [Full Text] [Related]  

  • 55. Capturing the signal of weak electricigens: a worthy endeavour.
    Aiyer K; Doyle LE
    Trends Biotechnol; 2022 May; 40(5):564-575. PubMed ID: 34696916
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Convenient non-invasive electrochemical techniques to monitor microbial processes: current state and perspectives.
    Turick CE; Shimpalee S; Satjaritanun P; Weidner J; Greenway S
    Appl Microbiol Biotechnol; 2019 Oct; 103(20):8327-8338. PubMed ID: 31478059
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Unexpected Mechanism of Biodegradation and Defluorination of 2,2-Difluoro-1,3-Benzodioxole by Pseudomonas putida F1.
    Bygd MD; Aukema KG; Richman JE; Wackett LP
    mBio; 2021 Dec; 12(6):e0300121. PubMed ID: 34781746
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bioelectrochemical systems-driven directional ion transport enables low-energy water desalination, pollutant removal, and resource recovery.
    Chen X; Liang P; Zhang X; Huang X
    Bioresour Technol; 2016 Sep; 215():274-284. PubMed ID: 26961714
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Moving towards the enhancement of extracellular electron transfer in electrogens.
    Verma M; Singh V; Mishra V
    World J Microbiol Biotechnol; 2023 Mar; 39(5):130. PubMed ID: 36959310
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bioremediation of phenol by a novel partitioning bioreactor using cow dung microbial consortia.
    Singh D; Fulekar MH
    Biotechnol J; 2009 Mar; 4(3):423-31. PubMed ID: 19296450
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.