These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 38184607)

  • 1. Minimal aromatic aldehyde reduction (MARE) yeast platform for engineering vanillin production.
    Mo Q; Yuan J
    Biotechnol Biofuels Bioprod; 2024 Jan; 17(1):4. PubMed ID: 38184607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker's yeast (Saccharomyces cerevisiae).
    Hansen EH; Møller BL; Kock GR; Bünner CM; Kristensen C; Jensen OR; Okkels FT; Olsen CE; Motawia MS; Hansen J
    Appl Environ Microbiol; 2009 May; 75(9):2765-74. PubMed ID: 19286778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved vanillin production in baker's yeast through in silico design.
    Brochado AR; Matos C; Møller BL; Hansen J; Mortensen UH; Patil KR
    Microb Cell Fact; 2010 Nov; 9():84. PubMed ID: 21059201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vanillin Production in
    García-Hidalgo J; Brink DP; Ravi K; Paul CJ; Lidén G; Gorwa-Grauslund MF
    Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31924622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilization of a styrene-derived pathway for 2-phenylethanol production in budding yeast.
    Mo Q; Chen H; Fan C; Zhang D; Liu L; Fu B; Yuan J
    Appl Microbiol Biotechnol; 2021 Mar; 105(6):2333-2340. PubMed ID: 33649922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineered
    Kim HS; Choi JA; Kim BY; Ferrer L; Choi JM; Wendisch VF; Lee JH
    Front Bioeng Biotechnol; 2022; 10():880277. PubMed ID: 35646884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway.
    Kildegaard KR; Jensen NB; Schneider K; Czarnotta E; Özdemir E; Klein T; Maury J; Ebert BE; Christensen HB; Chen Y; Kim IK; Herrgård MJ; Blank LM; Forster J; Nielsen J; Borodina I
    Microb Cell Fact; 2016 Mar; 15():53. PubMed ID: 26980206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and accumulation of aromatic aldehydes in an engineered strain of Escherichia coli.
    Kunjapur AM; Tarasova Y; Prather KL
    J Am Chem Soc; 2014 Aug; 136(33):11644-54. PubMed ID: 25076127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global Metabolic Rewiring of Yeast Enables Overproduction of Sesquiterpene (+)-Valencene.
    Cao C; Cao X; Yu W; Chen Y; Lin X; Zhu B; Zhou YJ
    J Agric Food Chem; 2022 Jun; 70(23):7180-7187. PubMed ID: 35657170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deregulation of S-adenosylmethionine biosynthesis and regeneration improves methylation in the E. coli de novo vanillin biosynthesis pathway.
    Kunjapur AM; Hyun JC; Prather KL
    Microb Cell Fact; 2016 Apr; 15():61. PubMed ID: 27067813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and functional evaluation of the reductases and dehydrogenases from Saccharomyces cerevisiae involved in vanillin resistance.
    Wang X; Liang Z; Hou J; Bao X; Shen Y
    BMC Biotechnol; 2016 Apr; 16():31. PubMed ID: 27036139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multidimensional Optimization of
    Fan J; Zhang Y; Li W; Li Z; Zhang D; Mo Q; Cao M; Yuan J
    Biodes Res; 2024; 6():0026. PubMed ID: 38213763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering of hydroxymandelate synthases and the aromatic amino acid pathway enables de novo biosynthesis of mandelic and 4-hydroxymandelic acid with Saccharomyces cerevisiae.
    Reifenrath M; Boles E
    Metab Eng; 2018 Jan; 45():246-254. PubMed ID: 29330068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic genome engineering forging new frontiers for wine yeast.
    Pretorius IS
    Crit Rev Biotechnol; 2017 Feb; 37(1):112-136. PubMed ID: 27535766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Primary and Secondary Metabolic Effects of a Key Gene Deletion (Δ
    Chen Y; Wang Y; Liu M; Qu J; Yao M; Li B; Ding M; Liu H; Xiao W; Yuan Y
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683746
    [No Abstract]   [Full Text] [Related]  

  • 16. Vanillin production by Corynebacterium glutamicum using heterologous aromatic carboxylic acid reductases.
    Matsuzawa M; Ito J; Danjo K; Fukui K
    Biotechnol Biofuels Bioprod; 2024 May; 17(1):58. PubMed ID: 38693567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic analysis revealed the roles of YRR1 deletion in enhancing the vanillin resistance of Saccharomyces cerevisiae.
    Cao W; Zhao W; Yang B; Wang X; Shen Y; Wei T; Qin W; Li Z; Bao X
    Microb Cell Fact; 2021 Jul; 20(1):142. PubMed ID: 34301255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Level Production of Hydroxytyrosol in Engineered
    Liu H; Wu X; Ma H; Li J; Liu Z; Guo X; Dong J; Zou S; Luo Y
    ACS Synth Biol; 2022 Nov; 11(11):3706-3713. PubMed ID: 36345886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis of vanillin by different microorganisms: a review.
    Ma Q; Liu L; Zhao S; Huang Z; Li C; Jiang S; Li Q; Gu P
    World J Microbiol Biotechnol; 2022 Jan; 38(3):40. PubMed ID: 35018518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering Saccharomyces cerevisiae for isoprenol production.
    Kim J; Baidoo EEK; Amer B; Mukhopadhyay A; Adams PD; Simmons BA; Lee TS
    Metab Eng; 2021 Mar; 64():154-166. PubMed ID: 33581331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.