These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 38184678)

  • 1. Active machine learning model for the dynamic simulation and growth mechanisms of carbon on metal surface.
    Zhang D; Yi P; Lai X; Peng L; Li H
    Nat Commun; 2024 Jan; 15(1):344. PubMed ID: 38184678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-catalyzed C-C covalent coupling strategies toward the synthesis of low-dimensional carbon-based nanostructures.
    Fan Q; Gottfried JM; Zhu J
    Acc Chem Res; 2015 Aug; 48(8):2484-94. PubMed ID: 26194462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomistic Simulations of Graphene Growth: From Kinetics to Mechanism.
    Qiu Z; Li P; Li Z; Yang J
    Acc Chem Res; 2018 Mar; 51(3):728-735. PubMed ID: 29493220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An all-atom kinetic Monte Carlo model for chemical vapor deposition growth of graphene on Cu(1 1 1) substrate.
    Chen S; Gao J; Srinivasan BM; Zhang G; Sorkin V; Hariharaputran R; Zhang YW
    J Phys Condens Matter; 2020 Apr; 32(15):155401. PubMed ID: 31846953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth of Single-Layer and Multilayer Graphene on Cu/Ni Alloy Substrates.
    Huang M; Ruoff RS
    Acc Chem Res; 2020 Apr; 53(4):800-811. PubMed ID: 32207601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes.
    Zhu YP; Guo C; Zheng Y; Qiao SZ
    Acc Chem Res; 2017 Apr; 50(4):915-923. PubMed ID: 28205437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational study of graphene growth on copper by first-principles and kinetic Monte Carlo calculations.
    Taioli S
    J Mol Model; 2014 Jul; 20(7):2260. PubMed ID: 24939464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elucidation of Cu-Zn Surface Alloying on Cu(997) by Machine-Learning Molecular Dynamics.
    Halim HH; Morikawa Y
    ACS Phys Chem Au; 2022 Sep; 2(5):430-447. PubMed ID: 36855689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The transition metal surface dependent methane decomposition in graphene chemical vapor deposition growth.
    Wang X; Yuan Q; Li J; Ding F
    Nanoscale; 2017 Aug; 9(32):11584-11589. PubMed ID: 28770913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth Control Strategy of Hydrogen-Containing Nanocrystalline Carbon Films during Plasma-Enhanced Chemical Vapor Deposition based on Molecular Dynamics-Monte Carlo Simulations.
    Che J; Yi P; Deng Y; Zhang D; Peng L; Lai X
    ACS Appl Mater Interfaces; 2023 Sep; 15(38):45475-45484. PubMed ID: 37703433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Edge structural stability and kinetics of graphene chemical vapor deposition growth.
    Shu H; Chen X; Tao X; Ding F
    ACS Nano; 2012 Apr; 6(4):3243-50. PubMed ID: 22417179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Designed CVD growth of graphene via process engineering.
    Yan K; Fu L; Peng H; Liu Z
    Acc Chem Res; 2013 Oct; 46(10):2263-74. PubMed ID: 23869401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Growth of Graphene on Ni-Cu Alloy Thin Films at a Low Temperature and Its Carbon Diffusion Mechanism.
    Dong Y; Guo S; Mao H; Xu C; Xie Y; Cheng C; Mao X; Deng J; Pan G; Sun J
    Nanomaterials (Basel); 2019 Nov; 9(11):. PubMed ID: 31744237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Airbrushed nickel nanoparticles for large-area growth of vertically aligned carbon nanofibers on metal (Al, Cu, Ti) surfaces.
    Sarac MF; Anderson BD; Pearce RC; Railsback JG; Oni AA; White RM; Hensley DK; LeBeau JM; Melechko AV; Tracy JB
    ACS Appl Mater Interfaces; 2013 Sep; 5(18):8955-60. PubMed ID: 24016419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Mechanism of Graphene Vapor-Solid Growth on Insulating Substrates.
    Cheng T; Liu Z; Liu Z; Ding F
    ACS Nano; 2021 Apr; 15(4):7399-7408. PubMed ID: 33749254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfacially formed organized planar inorganic, polymeric and composite nanostructures.
    Khomutov GB
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):79-116. PubMed ID: 15571664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon dimers as the dominant feeding species in epitaxial growth and morphological phase transition of graphene on different Cu substrates.
    Wu P; Zhang Y; Cui P; Li Z; Yang J; Zhang Z
    Phys Rev Lett; 2015 May; 114(21):216102. PubMed ID: 26066446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Ternary Alloy Substrate to Synthesize Monolayer Graphene with Liquid Carbon Precursor.
    Gan W; Han N; Yang C; Wu P; Liu Q; Zhu W; Chen S; Wu C; Habib M; Sang Y; Muhammad Z; Zhao J; Song L
    ACS Nano; 2017 Feb; 11(2):1371-1379. PubMed ID: 28085266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper-Catalyzed Oxidative Carbon-Carbon and/or Carbon-Heteroatom Bond Formation with O
    Tang X; Wu W; Zeng W; Jiang H
    Acc Chem Res; 2018 May; 51(5):1092-1105. PubMed ID: 29648789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.