BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 38184993)

  • 1. Development of a fast and simple method for the isolation of superparamagnetic iron oxide nanoparticles protein corona from protein-rich matrices.
    Soliman MG; Trinh DN; Ravagli C; Meleady P; Henry M; Movia D; Doumett S; Cappiello L; Prina-Mello A; Baldi G; Monopoli MP
    J Colloid Interface Sci; 2024 Apr; 659():503-519. PubMed ID: 38184993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation Methods Influence the Protein Corona Composition on Gold-Coated Iron Oxide Nanoparticles.
    Hoang KNL; Wheeler KE; Murphy CJ
    Anal Chem; 2022 Mar; 94(11):4737-4746. PubMed ID: 35258278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Technical tip: high-resolution isolation of nanoparticle-protein corona complexes from physiological fluids.
    Di Silvio D; Rigby N; Bajka B; Mayes A; Mackie A; Baldelli Bombelli F
    Nanoscale; 2015 Jul; 7(28):11980-90. PubMed ID: 26108682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of nanoparticle size and PEGylation on the protein corona of PLGA nanoparticles.
    Partikel K; Korte R; Stein NC; Mulac D; Herrmann FC; Humpf HU; Langer K
    Eur J Pharm Biopharm; 2019 Aug; 141():70-80. PubMed ID: 31082511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The importance of selecting a proper biological milieu for protein corona analysis in vitro: Human plasma versus human serum.
    Mirshafiee V; Kim R; Mahmoudi M; Kraft ML
    Int J Biochem Cell Biol; 2016 Jun; 75():188-95. PubMed ID: 26643610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Situ Characterization of Protein Adsorption onto Nanoparticles by Fluorescence Correlation Spectroscopy.
    Shang L; Nienhaus GU
    Acc Chem Res; 2017 Feb; 50(2):387-395. PubMed ID: 28145686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surfactant titration of nanoparticle-protein corona.
    Maiolo D; Bergese P; Mahon E; Dawson KA; Monopoli MP
    Anal Chem; 2014 Dec; 86(24):12055-63. PubMed ID: 25350777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A magnetic separation method for isolating and characterizing the biomolecular corona of lipid nanoparticles.
    Francia V; Zhang Y; Cheng MHY; Schiffelers RM; Witzigmann D; Cullis PR
    Proc Natl Acad Sci U S A; 2024 Mar; 121(11):e2307803120. PubMed ID: 38437542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How Corona Formation Impacts Nanomaterials as Drug Carriers.
    Gupta MN; Roy I
    Mol Pharm; 2020 Mar; 17(3):725-737. PubMed ID: 31939673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preservation of the soft protein corona in distinct flow allows identification of weakly bound proteins.
    Weber C; Simon J; Mailänder V; Morsbach S; Landfester K
    Acta Biomater; 2018 Aug; 76():217-224. PubMed ID: 29885856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The functional dissection of the plasma corona of SiO₂-NPs spots histidine rich glycoprotein as a major player able to hamper nanoparticle capture by macrophages.
    Fedeli C; Segat D; Tavano R; Bubacco L; De Franceschi G; de Laureto PP; Lubian E; Selvestrel F; Mancin F; Papini E
    Nanoscale; 2015 Nov; 7(42):17710-28. PubMed ID: 26451907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of main influencing factors on the protein corona composition of PLGA and PLA nanoparticles.
    Spreen H; Behrens M; Mulac D; Humpf HU; Langer K
    Eur J Pharm Biopharm; 2021 Jun; 163():212-222. PubMed ID: 33862242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the nanoparticle-protein corona complexes using computational and experimental methods.
    Kharazian B; Hadipour NL; Ejtehadi MR
    Int J Biochem Cell Biol; 2016 Jun; 75():162-74. PubMed ID: 26873405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nano-Bio Interactions in Cancer: From Therapeutics Delivery to Early Detection.
    Liu Y; Wang J; Xiong Q; Hornburg D; Tao W; Farokhzad OC
    Acc Chem Res; 2021 Jan; 54(2):291-301. PubMed ID: 33180454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissociation-based screening of nanoparticle-protein interaction via flow field-flow fractionation.
    Ashby J; Schachermeyer S; Pan S; Zhong W
    Anal Chem; 2013 Aug; 85(15):7494-501. PubMed ID: 23859073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic and Lipidomic Analysis of Nanoparticle Corona upon Contact with Lung Surfactant Reveals Differences in Protein, but Not Lipid Composition.
    Raesch SS; Tenzer S; Storck W; Rurainski A; Selzer D; Ruge CA; Perez-Gil J; Schaefer UF; Lehr CM
    ACS Nano; 2015 Dec; 9(12):11872-85. PubMed ID: 26575243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Profiling of nanoparticle-protein interactions by electrophoresis techniques.
    Zarei M; Aalaie J
    Anal Bioanal Chem; 2019 Jan; 411(1):79-96. PubMed ID: 30317444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein corona, understanding the nanoparticle-protein interactions and future perspectives: A critical review.
    Kopac T
    Int J Biol Macromol; 2021 Feb; 169():290-301. PubMed ID: 33340622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasma Parameters During Nanoparticle-Enhanced Laser-Induced Breakdown Spectroscopy (NELIBS) in the Presence of Nanoparticle-Protein Conjugates.
    Dell'Aglio M; Mallardi A; Gaudiuso R; Giacomo A
    Appl Spectrosc; 2023 Nov; 77(11):1253-1263. PubMed ID: 37700694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron Oxide Nanoparticle Coatings Dictate Cell Outcomes Despite the Influence of Protein Coronas.
    Portilla Y; Mellid S; Paradela A; Ramos-Fernández A; Daviu N; Sanz-Ortega L; Pérez-Yagüe S; Morales MP; Barber DF
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):7924-7944. PubMed ID: 33587585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.