These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 38185709)

  • 1. MAGPIE: accurate pathogenic prediction for multiple variant types using machine learning approach.
    Liu Y; Zhang T; You N; Wu S; Shen N
    Genome Med; 2024 Jan; 16(1):3. PubMed ID: 38185709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. parSMURF, a high-performance computing tool for the genome-wide detection of pathogenic variants.
    Petrini A; Mesiti M; Schubach M; Frasca M; Danis D; Re M; Grossi G; Cappelletti L; Castrignanò T; Robinson PN; Valentini G
    Gigascience; 2020 May; 9(5):. PubMed ID: 32444882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SVPath: an accurate pipeline for predicting the pathogenicity of human exon structural variants.
    Yang Y; Wang X; Zhou D; Wei DQ; Peng S
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35180781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ClinPred: Prediction Tool to Identify Disease-Relevant Nonsynonymous Single-Nucleotide Variants.
    Alirezaie N; Kernohan KD; Hartley T; Majewski J; Hocking TD
    Am J Hum Genet; 2018 Oct; 103(4):474-483. PubMed ID: 30220433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LYRUS: a machine learning model for predicting the pathogenicity of missense variants.
    Lai J; Yang J; Gamsiz Uzun ED; Rubenstein BM; Sarkar IN
    Bioinform Adv; 2022; 2(1):vbab045. PubMed ID: 35036922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MP4: a machine learning based classification tool for prediction and functional annotation of pathogenic proteins from metagenomic and genomic datasets.
    Gupta A; Malwe AS; Srivastava GN; Thoudam P; Hibare K; Sharma VK
    BMC Bioinformatics; 2022 Nov; 23(1):507. PubMed ID: 36443666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TADA-a machine learning tool for functional annotation-based prioritisation of pathogenic CNVs.
    Hertzberg J; Mundlos S; Vingron M; Gallone G
    Genome Biol; 2022 Mar; 23(1):67. PubMed ID: 35232478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomedical informatics and machine learning for clinical genomics.
    Diao JA; Kohane IS; Manrai AK
    Hum Mol Genet; 2018 May; 27(R1):R29-R34. PubMed ID: 29566172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning random forest for predicting oncosomatic variant NGS analysis.
    Pellegrino E; Jacques C; Beaufils N; Nanni I; Carlioz A; Metellus P; Ouafik L
    Sci Rep; 2021 Nov; 11(1):21820. PubMed ID: 34750410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide prediction of pathogenic gain- and loss-of-function variants from ensemble learning of a diverse feature set.
    Stein D; Kars ME; Wu Y; Bayrak ÇS; Stenson PD; Cooper DN; Schlessinger A; Itan Y
    Genome Med; 2023 Nov; 15(1):103. PubMed ID: 38037155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning models for accurate prioritization of variants of uncertain significance.
    Mahecha D; Nuñez H; Lattig MC; Duitama J
    Hum Mutat; 2022 Apr; 43(4):449-460. PubMed ID: 35143088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of genetic variant databases and machine learning tools for predicting the pathogenicity of breast cancer.
    Ahmad RM; Ali BR; Al-Jasmi F; Sinnott RO; Al Dhaheri N; Mohamad MS
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38149678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CAPICE: a computational method for Consequence-Agnostic Pathogenicity Interpretation of Clinical Exome variations.
    Li S; van der Velde KJ; de Ridder D; van Dijk ADJ; Soudis D; Zwerwer LR; Deelen P; Hendriksen D; Charbon B; van Gijn ME; Abbott K; Sikkema-Raddatz B; van Diemen CC; Kerstjens-Frederikse WS; Sinke RJ; Swertz MA
    Genome Med; 2020 Aug; 12(1):75. PubMed ID: 32831124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. nanotatoR: a tool for enhanced annotation of genomic structural variants.
    Bhattacharya S; Barseghyan H; Délot EC; Vilain E
    BMC Genomics; 2021 Jan; 22(1):10. PubMed ID: 33407088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ensemble machine learning model trained on a new synthesized dataset generalizes well for stress prediction using wearable devices.
    Vos G; Trinh K; Sarnyai Z; Rahimi Azghadi M
    J Biomed Inform; 2023 Dec; 148():104556. PubMed ID: 38048895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. mvPPT: A Highly Efficient and Sensitive Pathogenicity Prediction Tool for Missense Variants.
    Tong SY; Fan K; Zhou ZW; Liu LY; Zhang SQ; Fu Y; Wang GZ; Zhu Y; Yu YC
    Genomics Proteomics Bioinformatics; 2023 Apr; 21(2):414-426. PubMed ID: 35940520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DrivR-Base: a feature extraction toolkit for variant effect prediction model construction.
    Francis A; Campbell C; Gaunt TR
    Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38603611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene-specific machine learning model to predict the pathogenicity of
    Khandakji MN; Mifsud B
    Front Genet; 2022; 13():982930. PubMed ID: 36246618
    [No Abstract]   [Full Text] [Related]  

  • 19. StrVCTVRE: A supervised learning method to predict the pathogenicity of human genome structural variants.
    Sharo AG; Hu Z; Sunyaev SR; Brenner SE
    Am J Hum Genet; 2022 Feb; 109(2):195-209. PubMed ID: 35032432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A machine learning approach based on ACMG/AMP guidelines for genomic variant classification and prioritization.
    Nicora G; Zucca S; Limongelli I; Bellazzi R; Magni P
    Sci Rep; 2022 Feb; 12(1):2517. PubMed ID: 35169226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.