These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38185945)

  • 1. Characterising coordination strategies during initial acceleration in sprinters ranging from highly trained to world class.
    Donaldson B; Bezodis N; Bayne H
    J Sports Sci; 2023 Oct; 41(19):1768-1778. PubMed ID: 38185945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inter- and intra-limb coordination during initial sprint acceleration.
    Donaldson BJ; Bezodis NE; Bayne H
    Biol Open; 2022 Oct; 11(10):. PubMed ID: 36156114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences in step characteristics and linear kinematics between rugby players and sprinters during initial sprint acceleration.
    Wild JJ; Bezodis IN; North JS; Bezodis NE
    Eur J Sport Sci; 2018 Nov; 18(10):1327-1337. PubMed ID: 29996724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationships between kinematic characteristics and ratio of forces during initial sprint acceleration.
    King D; Burnie L; Nagahara R; Bezodis NE
    J Sports Sci; 2022 Nov; 40(22):2524-2532. PubMed ID: 36722337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thigh and Psoas Major Muscularity and Its Relation to Running Mechanics in Sprinters.
    Ema R; Sakaguchi M; Kawakami Y
    Med Sci Sports Exerc; 2018 Oct; 50(10):2085-2091. PubMed ID: 30222688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of treadmill running velocity on lower extremity coordination variability in healthy runners.
    Bailey JP; Freedman Silvernail J; Dufek JS; Navalta J; Mercer JA
    Hum Mov Sci; 2018 Oct; 61():144-150. PubMed ID: 30092396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinematics of Maximal Speed Sprinting With Different Running Speed, Leg Length, and Step Characteristics.
    Miyashiro K; Nagahara R; Yamamoto K; Nishijima T
    Front Sports Act Living; 2019; 1():37. PubMed ID: 33344960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intralimb gait coordination of individuals with stroke using vector coding.
    Celestino ML; van Emmerik R; Barela JA; Gama GL; Barela AMF
    Hum Mov Sci; 2019 Dec; 68():102522. PubMed ID: 31707313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A biomechanical comparison of initial sprint acceleration performance and technique in an elite athlete with cerebral palsy and able-bodied sprinters.
    Bezodis IN; Cowburn J; Brazil A; Richardson R; Wilson C; Exell TA; Irwin G
    Sports Biomech; 2020 Apr; 19(2):189-200. PubMed ID: 29768121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes to horizontal force-velocity and impulse measures during sprint running acceleration with thigh and shank wearable resistance.
    Feser EH; Bezodis NE; Neville J; Macadam P; Uthoff AM; Nagahara R; Tinwala F; Clark K; Cronin JB
    J Sports Sci; 2021 Jul; 39(13):1519-1527. PubMed ID: 33583334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinematics of transition during human accelerated sprinting.
    Nagahara R; Matsubayashi T; Matsuo A; Zushi K
    Biol Open; 2014 Jul; 3(8):689-99. PubMed ID: 24996923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical Performance Factors in the Track and Field Sprint Start: A Systematic Review.
    Valamatos MJ; Abrantes JM; Carnide F; Valamatos MJ; Monteiro CP
    Int J Environ Res Public Health; 2022 Mar; 19(7):. PubMed ID: 35409757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How sprinters accelerate beyond the velocity plateau of soccer players: Waveform analysis of ground reaction forces.
    Colyer SL; Nagahara R; Takai Y; Salo AIT
    Scand J Med Sci Sports; 2018 Dec; 28(12):2527-2535. PubMed ID: 30230037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute effects of wearable thigh and shank loading on spatiotemporal and kinematic variables during maximum velocity sprinting.
    Hurst O; Kilduff LP; Johnston M; Cronin JB; Bezodis NE
    Sports Biomech; 2022 Nov; 21(10):1234-1248. PubMed ID: 32329417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic and kinematic synchronization between blind and guide sprinters.
    Nagahara R
    J Sports Sci; 2021 Jul; 39(14):1661-1668. PubMed ID: 33622181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First and Second Step Characteristics of Amputee and Able-Bodied Sprinters.
    Strutzenberger G; Brazil A; Exell T; von Lieres Und Wilkau H; Davies JD; Willwacher S; Funken J; Müller R; Heinrich K; Schwameder H; Potthast W; Irwin G
    Int J Sports Physiol Perform; 2018 Aug; 13(7):874-881. PubMed ID: 29252086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterising initial sprint acceleration strategies using a whole-body kinematics approach.
    Wild JJ; Bezodis IN; North JS; Bezodis NE
    J Sports Sci; 2022 Jan; 40(2):203-214. PubMed ID: 34612166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gender-Related Differences in Mechanics of the Sprint Start and Sprint Acceleration of Top National-Level Sprinters.
    Mirkov DM; Knezevic OM; Garcia-Ramos A; Čoh M; Šarabon N
    Int J Environ Res Public Health; 2020 Sep; 17(18):. PubMed ID: 32899837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of expertise on 3D force application during the starting block phase and subsequent steps in sprint running.
    Otsuka M; Shim JK; Kurihara T; Yoshioka S; Nokata M; Isaka T
    J Appl Biomech; 2014 Jun; 30(3):390-400. PubMed ID: 24615252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lower-limb wearable resistance overloads joint angular velocity during early acceleration sprint running.
    Feser EH; Neville J; Wells D; Diewald S; Kameda M; Bezodis NE; Clark K; Nagahara R; Macadam P; Uthoff AM; Tinwala F; Cronin JB
    J Sports Sci; 2023 Mar; 41(4):326-332. PubMed ID: 37183445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.